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1. INTRODUCTION 

Consider the inherent deficiencies of "traditional" (i.e., 

single objective function) mathematical programming formulations of 

real-world models in view of the fact that a decision-maker func

tions in a multi-criterion environment. Virtually all decision

making situations involve simultaneous consideration of multiple 

and oftentimes conflicting "goals" or objectives. 

Assuming that it is possible to construct mathematical ex

pressions for a decision-maker's goals, the resulting formulation 

describes a multiple criteria programming problem. Clearly, multiple 

objective optimization models provide a superior representation of 

real-world decision-making situations relative to single objective 

models. Although the concept of multiple criterion optimization 

is intuitively appealing, the "solution" of multiple objective 

programming problems raises some serious questions with regard to 

theoretical and conçutational aspects of the problem. In particu

lar, the criterion with which to judge optimality is itself subject 

to debate and controversy. Hence, any solution procedure used to 

identify optimal solutions must reflect this important theoretical 

consideration. 

The primary emphasis of this study is focused on the ccrçïuta-

tional aspects of multiple objective optimization problems involving 

linear functionals. An overview of this study is now presented. 
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1.1 Overview 

Chapter 2 presents both a foimal and an intuitive introduction 

to the general area of linear multiple objective optimization from 

a utility theoretic perspective. As a consequence of related work 

in decision theory, a linear multiple objective programming problem 

is recast as a (linear) vector maximum problem where the objective 

is the identification of solutions which are "admissable", "undomi-

nated", or "efficient". In particular, the computational aspects 

are considered in view of recent results in the literature. Also 

presented, in the spirit of background information, is the philo

sophically different approach to linear multiple objective optimi

zation known as goal programming. Construction, analysis, and 

discussion of this problem focus on the computational aspects of 

the model and the fundamental issue of a "measure" of goal achieve

ment is also addressed. Moreover, the equivalence of goal pro

gramming and linear regression (with or without side conditions) is 

established to provide motivation for studying alternative measures 

of goal achievement in view of the recent trend to consider alter

native criterion of fit in linear regression. 

The mathematical preliminaries and the intermediate results 

presented in Chapter 3 establish foundations for a new approach to 

the solution of the linear vector maxiimim problem based on the 

metric. Althou^ the solution procedure is developed in detail, 

the computational advantages of the approach are questionable. Other 
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theoretical aspects of the approach are considered and discussed in 

detail. 

The development and analysis presented in Chapter 3 provide a 

framework for the more general results contained in Chapter k. In 

particular, a solution procedure is developed for the linear multi

ple objective problem based on the metric when pe[l,°°). The 

analysis focuses initially on the linear vector maximum problem and 

is then extended to accommodate the more general goal programming 

problem. As a consequence of the metric, the solution pro

cedure utilizes a branch of convex programming known as geometric 

programming. Motivation for the geometric programming formula

tion is derived from the computational advantages inherent in its 

associated dual problem. Moreover, it will be shown that the 

resulting dual problem can be solved by linear programming tech

niques. 

Recognizing the importance of duality in mathematical pro

gramming problems. Chapter 5 provides a brief overview of an in

teresting dual problem associated with the a linearly constrained 

minimum norm problem. Based on results established by another 

author, a dual problem is considered which does not contribute to 

the computational aspects of the problem. However, analysis of this 

dual problem utilizing the Lagrangian function does provide a re

sult which may be useful in interpreting the physical significance 

of the dual problem. 
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The last major chapter of the thesis. Chapter 6, summarizes 

the key results of the paper. In particular, the computational as

pects of the dual problem presented in Chapter k are explored fur

ther as criticisms of this approach are considered. 

1.2 Notation 

To obtain notational consistency with related literature, the 

following conventions will hold throughout this thesis: 

1. The symbol " <=> " reads as "if and only if" or "is equiva

lent to." 

2. Let Then x - y <=> = y^, j=l,...,n. 

3. let Then x - y x = y, x / y. 

4. Let XjyER*^. Then x > y x. > y. j=l,...,n. 
J 3f  

5. An(a) = logg(a) ̂ or a > 0). 



www.manaraa.com

5 

2. LIKEAR MJLTIFLE OBJECTIVE OPTIMIZATION 

The roots of multiple objective optimization are found in the 

literature of classical physics, astronomy, and also in the related 

literature on the theory of games, decisions, and utility. In the 

context of a mathematical programming problem, multiple objective 

optimization is, in a broad sense, concerned with the constrained 

maximization of some measure of achievement or utility. To estab

lish the relationship between the theory of utility and multiple 

objective optimization consider the following construction of a 

linear multiple objective programming problem. 

denote a set of linear real-valued objective functions. Here 

Let 

g^Cx), S^ix)  , « 

gj,(x) = ĉ x i=l k 

where c^gI^ represent vectors of known constants and xeR^ is a 

vector of unknown decision variables. Also, define 

S = {xjxeR^, Ax = b, X = 0}. 

Thus, S describes a set of linear side conditions, or constraints. 
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on the model. Consider, also, the function 

g(x) = 

gl(x) 

go(x) = Cx 

so that C is a kxn matrix of known constants. Note that the 

vector-valued function g provides a mapping g:E from the 

"decision space" to an "outcome space" as defined by the linear 

operator C. Utilizing this notation we now state the most general 

form of our linear multiple objective programming problem. 

PROBLEM U 

Maximize U(z) 

subject to 

Cx = Z 

xeS. 

Here the real-valued function U, U:R%-R, assigns a measure of 

utility for the decision-maker, given the outcome vector Z defined 
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by a particular decision vector xeS. 

A complete treatment of the theory of utility is beyond the 

scope of this thesis; a more complete discussion of this subject may 

be found in Von Neumann and Mortgenstem , Hadley [25] / or Chemoff 

and Moses [12]. However, it is instructive and relevant to briefly 

outline what is involved with the existence and construction of 

such a utility function. With regard to the existence of a utility 

function, consider the following four axioms as presented in 

Chemoff and Moses [12] : 

1. With sufficient calculation an individual faced with 

two prospects and P^ will be able to decide 

whether he likes each equally well, or whether he pre

fers Pg to P^. 

2. If P^ is regarded at least as well as Pg and Pg at 

least as well as P^, then P^ is regarded at least as 

well as Pg. 

3. If P^ is preferred to P^ "vAiich is preferred to P^, 

then there is a mixture of P^ and P^ which is pre

ferred to Pg, and there is a mixture of P^ and P^ 

over which Pg is preferred. 

k. Suppose the individual prefers P^ to Pg and P^ is 

another prospect. Then we assume that the individual will 

prefer a mixture of P^ and P^ to the same mixture of 



www.manaraa.com

8 

Pg and P^. 

Von Neumann and Mortgenstern [43] have shown that if a decision

maker can satisfy these four axioms then the decision-maker has a 

utility function U(U;E -+B) which satisfies the following: 

PROPERTY 2.1 If 

1. Z^, ZgER and 

2. Z, - Z_ 

then 

U(Z^) > U(Zg). 

In view of Problem U, Property 2.1 can "be interpreted as a criterion 

with which to measure optimality when one is concerned with the 

simultaneous maximization of the k linear objective functions. 

Note that the four axioms only address the existence of a utility 

function—the behavior of which is described in Property 2.1. The 

actual construction of a particular utility function is indeed a 

difficult and complex task, (For a discussion of the complexities 

associated with the construction of a utility function see 

Brandis t5]>) 

Although it is apparent that the fundamental nature of multiple 

objective optimization is embodied in the theory of utility, it is 

clear that a more pragmatic approach to the development of a measure 
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of achievement is not only desirable but also a necessity. Moreover, 

it is evident that the acceptance of multiple objective optimization 

as a decision-making tool depends critically on the development of 

relatively strai^tforward solution techniques for use by the decision

maker. 

Following, in spirit, a utility function approach, we now 

present two distinctly different approaches to linear multiple ob

jective optimization. In particular, we will review the classic 

vector maximum problem and another problem of more recent vintage 

known as goal programming. In each case we will discuss the 

relative merits of the approach and note that these procedures, in 

fact, were developed to circumvent the complexities of multiple 

criterion decision-making. To provide motivation for considering 

alternative measures of achievement and to establish a foundation 

for the material presented in Chapter h, we will also outline the 

classic statistical problem of constrained regression. 

2.1 The Vector Maximum Problem 

The vector maximum problem first appeared in the literature 

of mathematical programming in the classic paper by Kuhn and 

Tucker [331 cm nonlinear programming. Recognizing the importance 

of multiple objective optimization, Kuhn and Tucker developed a set 

of necessary and sufficient optimalIty criteria for the following 

problem. 
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PROBLEM VM (Kuhn and Tucker [331 ) To find an that msytmizes 

the vector function Gx constrained by Ex = 0, x = 0—that is, to 

find an x° satisfying the constraints and such that Gx - Gx° for 

no X satisfying the constraints. 

With regard to our formulation of the linear multiple objective 

programming problem, the vector function Gx corresponds to our 

g(x) and the constraints Fx = 0, x = 0 correspond to our set S. 

Thus, we focus attention on a linear version of Problem VM. It 

is important to note that the construction of a specific utility 

function, U, is avoided. Moreover, in view of Property 2.1, it 

is assumed that such a utility function exists and that the measure 

of utility is maximized when the outcome vector Z is "maximized". 

The linear version of the vector maximum problem may be expressed as : 

PROBLEM LVM 

"Maximize" Cx 

subject to 

xeS. 

Note that the function Cx is veccor-valued and that the objectivé 

to "maximize" this function does not conform to a traditional cri

terion of optimality. Thus, to solve Problem LVM we need to recast 

the concept of optimality and establish a new criterion for identi

fying those vectors which are, in some sense, optimal. These "optimal" 
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vectors are described in the following definition of efficiency. 

DEFINITION A point x°eS is said to be efficient if, and only if, 

there does not exist another xeS such that Cx - Cx°. 

An intuitive interpretation of an efficient point could be 

given as that point x%S which is undominated by all other points 

xeS to the extent that an increase in one of the components of 

Z° = Cx°, say Z?, is made only at the expense of a decrease 

in at least one other component of Z", say Z?. Thus, efficient 

solutions are analogous to "Pareto optimal solutions", "admissable 

points", and "proper solutions" in the context of economics, decision 

theory, and related areas as studied by Karlin [271, Von Neumann 

and Mortgenstern [^3], Geoffrion [23], Kuhn and Tucker [33] and 

others. As will be shown in subsequent sections of this chapter, 

however, the solution of P.oblen LVM under the criterion of effi

ciency is, indeed, a significant computational task. 

Before presenting some relevant results on a general solution 

of Problem LVM, it is instructive to consider the most common solu

tion procedure illustrating the fact that it is designed to circvm-

vent the true problem of multiple objective optimization. First, 

observe that Cx is a vector-valued function and that no generalized 

solution procedure is currently available to solve Problem LVM in 

the sense that the sin^lex algorithm is readily available for linear 

programming. Now, consider a cardinal ranking of the goals 
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% 
... ,gj^ as determined by a weighting vector vcR with components 

v^ > 0. This weighting of the objective functions suggests the follow

ing computationally attractive variant of Problem LVM: 

PROBLEM LVMW 

Maximize v'Cx 

subject to 

xeS. 

V 
Since veR is a vector of known constants, it follows that 

v'C:R^-+R. Thus, Problem LVMW is amenable to the methods of linear 

programming since v'Cx describes a linear real-valued function. 

Philip [39] has shown that this approach will identify an efficient 

solution to Problem LVM by establishing the following result. 

LEMMA 2.2 A point x°eS is said to be efficient (for Problem LVM) 

k 
if, and only if, there exists a vector veR such that 

1« v^ ̂  0, i=lj2,..«jk 

k 
2. Z V. = 1 

i=l 

3. x° solves maximize {v'Cx|xeS}. 

Implicit in this procedure, however, is the critical assun^tion that 

the decision-maker has a prior knowledge of the relative merits of 

each of the k objectives and that these relative "wei^ts" are 
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accurately defined by the vector v. Clearly, this is a very strong 

condition -which must he satisfied. Realistically, this assumption 

is often too strong to meet, "but the decision-maker is sometimes 

forced to proceed with this weighting approach because of its 

computational advantages. Further analysis of the weighting vector 

approach, in view of Lemma 2.2, reveals that a decision-maker, in 

theory, could identify all efficient points to the problem given 

Jj; 
that one could generate all possible vectors veR which satisfy 

the conditions of the lemma. It is immediately obvious that 

generating the set of all possible weighting vectors is futile. 

Although this procedure is particularly attractive, in view of the 

Lemma 2.2, it affords little promise for the decision-maker who 

is not prepared to establish absolute rankings but is merely in

terested in identifying a set of "admissable" solutions. 

Perhaps some of the most significant developments on the 

general theory of linear multiple objective programming can be 

attributed to Steuer [1+2] which later appeared in the literature 

by Evans and Steuer [19,20]. In pursuit of a general procedure 

to identify all efficient solutions to Problem LVM, Steuer developed 

an algorithmic approach based on the application of several well-

known theorems of the alternative (see, for example, Mangasarian 137]). 

Motivated by the premise that a decision-maker would like to select 

his best "compromise" solution from among the set of all efficient 

solutions, the procedure attempts a characterization of the set: 

E = {x|xES and x is efficient). 
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Since there could very well he an infinite number of points in the 

set E, the procedure was developed to identify all basic solutions 

of S which are efficient since this resulting subset Eg (E^£) 

is guaranteed to Have a linite number of elements. Moreover, it is 

proposed that E„ will provide a meaningful characterization of 

the set E. The algorithm is based on the construction of a sub-

problem at selected basic solutions to test not only for efficiency 

but also for an efficient direction in which to move to identify 

an adjacent basic solution which is also efficient. A brief de

scription of this procedure is now presented. 

DEFINITION A direction iieR^ is a feasible direction at a point 

^ -
X cS if, and only If, there exists a scalar o > 0 such that 

(x + aii)eS for all ae[0,a]. 

A logical extension of the concept of a feasible direction is given 

as follows. 

DEFINITION A vector yel^ defines an efficient direction at a point 

* 
X es if, and only if, 

- * 

1. w is a feasible direction at x , and 

* / * -\ 
2. There exists a scalar a > 0  such that (x + otjj; is an 

* 
efficient solution for all ae[0,a ]. 
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The relationship among efficient and feasible directions and 

efficient solutions is established in the following result. 

LEMMA 2.3 (Evans and Steuer 1-201) Let x° be an efficient solu

tion to Problem LVM and let yeR^ be a feasible direction at x°. 

Then m is an efficient direction at x° if, and only if, there 

does not exist a feasible direction such that Cy - Cy, 

Given that one has identified an efficient solution to Problem 

LVM, a subproblem must be constructed to determine the efficient 

direction y. Recall that a basic solution is an extreme point 

of the convex polyhedron S = {xjxeR^, Ax • b, x = 0}. Suppose 

one has identified an efficient extreme point x°eS. Let A be 

partitioned into B (the basic column vectors of A) and N (the 

nonbasic columns of A). Likewise, let C be partitioned into 

Cg (the column vectors of C associated with the basic variables) 

and C„ (the column vectors of C associated with the nonbasic 

variables) and so on for 

This notation permits the following definition of the reduced cost 

matrix 
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W . CgB-lg - 0^ 

which is used to define an efficient direction as seen in the follow

ing result. 

LEMMA 2.4 (Evans and Steuer [20]) Let x° be an efficient solu

tion to Problem LVM with associated basis matrix B. Then 

is an efficient direction at x° if, and only if, there does not 

exist a feasible direction at x°, such that 

Observe that feasible directions may be viewed as the edges of the 

polyhedron S adjacent to the point x°. In determining the effi

ciency of such a feasible direction the procedure becomes somewhat 

complicated in the presence of degeneracy (see [193) because in this 

case the number of extreme points adjacent to a given extreme point 

exceeds the number of nonbasic variables. To circumvent this prob

lem a condition is enforced on yeR^, at a given extreme point x°, 

which states that n must satisfy 

(-B-^)D WG I 0 

where (-B~^)p denotes the rows of -B"^ associated with the basic 
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variables lAiich are degenerate. Incorporating this condition into 

Lemma 2.h results in the following test for efficiency of a direc

tion p. 

LEMMA 2.5 (Evans and Steuer [20]) A vector describes an 

efficient direction if, and only if, the system 

% - S 
(-B-Ih)d Wg i 0 

> 

'N 
WT' = 0 

is inconsistent. 

This stronger version of Lemma 2.4 incoiporates a set of condi

tions relating to a pivoting strategy in the presence of degen

eracy. To illustrate this point, consider the simplex tableau 

in a state of complete degeneracy. If the jth column vector. P., 
V 

is chosen as the vector to enter the basis, then one may in fact 

"pivot" on any element of which is nonzero without loss of 

feasibility. Such is the nature of the additional restrictions 

in Lemma 2.5 

Focusing attention for the moment on the efficiency of a par

ticular point x° we have the following subproblem. 
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LEMMA 2.6 (Evans and Steuer [20] ) A solution x° is an effi

cient solution if, and only if, the problem 

maximize e'v 

subj ect to 

Wr + V = 0 

(B"^)p r + s = 0 

r, V, 8 = 0 

is bounded where e' represents the sum vector of appropriate length. 

Now, addressing the issue of efficiency of a direction, we have the 

following subproblem test, 

LEMMA 2.7 (Evans and Steuer [803 ) Let x° be an efficient 

extreme point. Then the subproblem given in Lemma 2.5 is consis

tent if, and only if, the subproblem 

maximize e'v 

subject to 

Wr + (-WVjj)w + V = 0 

r + s = 0 

> 
r, w, V, 8 = 0 

has a feasible solution with e'v > 0. That is, the objective 

function is unbounded. 
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In this particular algorithm, each edge of the polyhedron S 

adjacent to an efficient point x° is tested for efficiency. This 

is accomplished using the Chemikova procedure [11] to generate 

the set of all edges emanating from x° -where each edge can be 

viewed as a direction which is tested for efficiency using Lemma 

2. 7. From a conç»utational perspective, the procedure is programmed 

into the following three phases; 

1. Identify a basic feasible solution if one exists or 

terminate. 

2. From a basic feasible solution, proceed to identify an 

efficient extreme point. 

3. Fran an efficient extreme point, generate a list of all 

efficient extreme points. 

Clearly, phase3 is the most complex task. It is at this phase of 

the computation that subproblem construction and solution are deter

mined. Furthermore, as discussed in [I9I, this procedure requires 

extensive bookkeeping if one is to ensure finiteness of the algo

rithm. Phases 1 and 2 deserve special note since the procedure de

veloped supports five options with which to identify the initial 

efficient solution. Perhaps the most computationally attractive 

approach would be to assign some arbitrary weighting of the objectives 

and, in view of Lemma 2.2, solve a linear model. However, it is obvious 
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that in using this method one runs the risk of overlooking a basic 

efficient solution in pursuit of that particular "basic efficient so

lution which maximizes v'Cx. 

Although theoretically sound, a weakness in the philosophy of 

the solution procedure is evident since the resulting characteri

zation of E may be quite large albeit finite. This situation 
B 

is analogous to providing the decision-maker with too much informa

tion. It does, however, address the problem of multiple objective 

programming where the decision-maker is not in a position to estab

lish an absolute ranking of the goals or objectives. 

Other authors active in the area of efficient set methods in

clude Markowitz [38], Geoffrion[23J^ and Karlin [27J. In particu

lar, Geoffrion [231 proposed a procedure to identify all efficient 

solutions to a bi-criterion program (two objective functions). How

ever, the results of his work have not been extended to problems of 

a more general nature. 

A popular variant of the pure linear vector maximum problem has 

come to be known as goal programming. Here, a decision-maker's 

measure of utility is maxim? zed •when a measure of "goal achieve

ment" is maximized. We now present some relevant results in this 

area. 
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2.2 Goal Programming 

A philosophically different approach to linear multiple objec

tive programming was proposed by Charnes and Cooper ['71 * Not only 

does this approach afford significant computational advantages, but 

it also provides a more realistic model of many real-world decision

making situations. Consider, again, the most general foim of 

our linear multiple objective programming problem. 

PROBLEM U 

maximize U(Z) 

subject to 

Cx = Z 

xEg. 

A fundamental assumption implicit in goal programming is that the 

utility function, U(Z), is maximized when the outcome vector 

ZeR^ gets as close as possible to some target or "goal" vector 

g*eR^ which is assumed to be known and constant. Tims, the 

utility function is never explicitly constructed but is assumed to 

exist and, by definition, it provides a measure of "goal attainment". 

As introduced by Charnes and Cooper [7], discussed by Charnes 

and Cooper [6,^, and applied by Charnes, Cooper, Klingman and 

Niehaus 18] and Charnes, Cooper, Niehaus and Scholtz [9h the 
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measure of achievement is maximized when the distance between the 

point g*eK^ and the point g(x°)eR^, g(x) = Cx, is minimized. 

Recognize immediately that distance can be defined any numbei' of 

ways. Chapters 3 and h exploit alternative measures of achievement 

by considering a more general definition of distance. Of immediate 

k 
interest is the concept of distance between two vectors x, yGR 

as defined by the metric 

VP 
z  (x - y P 

i=l ^ ^ 

when p = 1, Thus, in goal programming the measure of achievement 

is maximized when the metric 

k *. 

i%w - %i 
1=1 

is minimized where (g^(x),g*) denote a goal function and its 

associated target value or goal. Under the assumption that this 

metric accurately describes the decision-maker's utility, the 

following linear programming model can be en^loyed. 

PROBIiEM GPl 

minimize z (w.d. + w.d. ) 
. \ 1 1 11 
1=1 

subject to 
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-  , +  *  
Cx + d - d = g 

xeS 

d"*", d"eR^, d"^, d" = 0 

<d", d^>= 0 

The inclusion of weights (wT, wT) in the model is intended to 

provide the decision-maker the option of specifying the relative 

importance of the various goals. Without loss of generality we can 

assume that wT = wT = 1 for all i and provide the following 

interpretation of the goal programming model. Consider any of the 

/ \ * 
k linear goal function, say g^(x)j and its corresponding goal g^. 

In view of Figure 1> the nature of goal programming is to find that 

particular X°GS that minimizes the sum of the deviations which 

'X-
describe the distance between g^(x) and g^» 

,1 
R-

—A7 

Figure 1. The Nature of Goal Programming 
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The last constraint in Problem GPl ensures that a given goal 

cannot have both positive (d^) and negative (d^) deviations 

active simultaneously. Fortunately, this (nonlinear) condition 

will always be satisfied when the simplex algorithm is used to 

solve the model. (The definition of a basis excludes the possibility 

of two active linearly independent vectors.) 

Inherent in the construction of Problem GPl is the assumption 

that the weights (wî, wT) define a cardinal ranking of the goals. 

Moreover, it is also assimed that minimizing the resulting "weighted" 

metric is equivalent to maximizing the decision-maker's measure 

of utility. For the sake of completeness it should be noted that 

an ordinal ranking of the goals is sometimes useful (see, for 

example, Lee [34] or Ijiri [26]). In this situation the goals are 

ranked according to some priority structure. That is, assume that 

goal g. is ranked ordinally above another goal g.. Then a 
1 J 

priority level P^ is assigned to the deviational variables 

corresponding to g. and a priority level P. is assigned to 
1 t) 

the deviational variables associated with g. such that P. » P., 
tJ ^ J 

In this case as well, a minor variant of the simplex algoritlmi can 

be ençloyed to solve the problem (see Lee [3^), 

The model outlined above describes the tool which is used to 

solve virtually all goal programming problems encountered in 

practice. Computer code implenting this procedure has been de

veloped by Lee and Hoffman in [S'+l and is generally well accepted. 

However, the practitioner interested in goeil programming should 
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address the following fundamental (and often overlooked) issue: 

"Does minimizing a wei^ted metric accurately describe a 

meaningful measure of achievement?" Clearly, this approach to goal 

programming affords the luxury of a well-known and readily available 

solution procedure. However, one wonders if the acceptance of this 

technique is based on its merit as a model of a decision-maker's 

utility or whether its popularity is derived from the inherent 

linearity of the model. Resolution of this philsophical issue is 

beyond the scope and not the intent of this thesis. However, to 

provide further insight ve will consider another goal programming 

model based on a different measure of achievement. The motivation 

behind introducing an alternative model is to illustrate the mathe

matical complexities one encounters with alternative measures of 

achievement and to provide a foundation for the results of Chapter 3o 

A goal programming model based on a measure of achievement 

different from the metric was proposed by Ijiri [261• To illus

trate the nature of his approach consider, again. Problem U where 

the utility function, U, is maximized when the metric 

S |x^ - y^P 
i=l ^ ^ 

VP 

is minimized for p = 2. Here the metric defines the Euclidean 

distance between the two vectors x, yeR . More specifically, let 
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r 
g(x) = 

g^Cx) 

ggW = Cx 

gfc(x) 

represent a set of linear goal functions defined as a vector-valued 

function g and let 

* 

1 
* 
«1 
* 
«2 

* 
6k 

represent a set of corresponding goals. Note that the Metric 

induces a Euclidean norm lAiich we will denote as 11 * 112 

more complete discussion of norms is given in Chapter 3)» Thus, a 

general fonmalation of a goal programming model based on the &g 

metric is given as: 

PROBLEM GP2 

minimize 11 g(x) - g*| | g 

subject to 

xeS, 
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Observe that Problem GP2 is inherently nonlinear and, in particular, 

is amenable to the methods of quadratic programming. In an effort 

to avoid the complexities associated with nonlinear optimization, 

Ijiri [26] proposes a generalized inverse approach to the solution 

of this model. To illustrate the nature of this approach let us 

assume, for the moment, that the program is unconstrained so that 

our problem simplifies to 

minimi ze 11Cx - g 11^ , 

or equivalently 

minimize 
f I / \ *, 2 
^ |gi(x) - g.| 
i=l ^ 1 

1/2 

Consider the kxn matrix C and let C denote its generalized 

inverse. It then follows, as a consequence of the theory of a 

generalized inverse of an arbitrary matrix (see Ijiri [26]), that 

the vector 

. * * 
X = C g 

is that unique vector for which 

1. Cx is a vector which is the minimum Euclidean distance 

to g* from among all vectors in R(C) (R(C) denotes 

row space of the matrix C), and 

2. X is minimum Euclidean distance to the origin. 
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Hence, x solves the problem 

subject to 

minimize llxjlg 

|Cx - g I L to be a minimum 

where I I' 11^ denotes the Euclidean norm. In Chapter 3 a more 

complete discussion of the properties of a generalized inverse is 

presented.. However, it is instructive at this point to note that 

alternative solutions to Problem GP2 are obtainable. In this 

situation, we may dispose of the uniqueness property guaranteed by 

minimize Mxllg 

and consider the solution d.efined by the expression 

X = C*g* + (I - C*C)Y, YER^. 

Here, x^ solves miiiimize | [Cx - g | |g for any vector 

/ * \ 

As will be shown in Chapter 3, (I-CC;Y is a vector from the null 

space of the matrix C so that 

* * , * . 
CX^ = CtC g + (I - C C)Y] 

* * , * . 
= CC g + C(I - c C)Y 
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* * * 
= CC g + CY - CC CY 

* * 
= CC g + CY - CY 

* * = CC g — Cx 

It is also inçortant to note that these results require further 

extensions if one is to incorporate constraints as given in the state

ment of Problem GP2. Moreover, the construction of the generalized 

inverse of an arbitrary kxn matrix is itself a significant compu

tational task. Although Ijiri's approach does allow for a measure 

of achievement different than the metric, it does not afford 

the computational advantages of linear programming. 

2.3 Goal Programming and Constrained Regression 

As recently noted by Chetmes and Cooper [6], the concept of 

goal programming or goal achievement is not totally new, A strongly 

equivalent problem studied by statisticians (see '[i]^ [2], [44]) is 

that of constrained approximation using linear approximating 

functions. To show that jy approximation is camplstely equivalent, in 

spirit, to goal programming, consider the following statistical problem: 

Let X denote a kx(n+l) "observation" matrix of known constants 

(k observations of n independent variables), let Y represent 

a kxl vector of observations of some dependent variable, and let 

3' - (3QJ • * » »  



www.manaraa.com

30 

denote a vector of unknown parameters to be estimated. Optionally, 

let 

S = D3 = &} 

represent a set of linear side conditions on the vector g. The 

nature of regression may now be described as follows; 

PROTET.TTM GRl Find a vector f, if it exists, such that 

1. f eS (if appropriate) 

2. maximizes some measure or criterion of fit for the model. 

If one assumes that maximizing the measure or criterion of fit cor

responds to minimizing the norm 

tlx6 - Y lip 

then we can state the &p approximation problem as: 

PROBMM GR2 

minimize I jx 3 - Y 11^ 

subject to 



www.manaraa.com

31 

1. D3 = d (optional) 

2. 

The relationship between goal programming and approximation is 

now evident if one considers the vector-valued function X3 to be 

a goal function and the observation vector Y to be the target or 

goal vector. 

Peihaps the most frequently encountered regression problem is 

known as "least squares" regression. In view of Problem GR2, a 

least squares regression is defined as that approximation prob

lem for which p = 2. Thus, in this context, least squares re

gression is then "regression under which may be expressed as 

L|X3 - YITG 

(optional) 

Most least squares regression problems do not involve the optional 

side conditions since this option adds significantly to the congni-

tational aspects of the problem as will be demonstrated shortly. 

Without side conditions, least squares regression reduces to finding 

a unique solution to the normal equations (see [151 ) given as 

subject to 

minimize 

D6 = d 

x'xe = x'Y 
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which is provided by the computation 

3° = (X'X)"^ X'Y 

It can be easily shown that 3°. solves the problem 

minimize llollg 

subject to 

I |X3 - Y I IG to be a mini mm 

which is completely equivalent to the goal programming model pro

posal by Ijiri where the measure of achievement is based on the 

metric. Just as in Ijiri^s model, the solution procedure for con

strained regression (i.e., including side conditions on 3) results 

in a nonlinear optimization problem which is amenable to the methods 

of quadratic programming. 

It is becoming increasingly evident that the popular least 

squares (&g) regression technique does not always yield a superior 

estimate of the unknown parameter 3. In particular, the estimate 

of 3 is quite sensitive to outliers in the observed data. Moreover, 

it can also be shown that when the error terms associated with the 

observations do not follow the N(0,l) distribution then some of 

the desirable properties of the estimate are not satisfied 

(such as consistency, unbiasedness, maximum likelihood, etc.). Further

more, if the error terms associated with the observations do not follow 
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a multivariate normal distribution (with mean 0 and variance l) 

then the distribution of the resulting estimate may not follow 

a multivariate normal in which case the analysis of variance, as we 

know it today, is invalid. Recognizing the sensitivity of esti

mates to outliers in the data, research in Ï1] and [22] is focused 

on the more general problem of regression. Althou^ a key as

pect of this research is the determination of the distributions of the 

estimates under certain assuu^jtions regarding the distribution of 

the errors, the general regression problem is inherently a 

nonlinear optimization problem for virtually all v^ues of p. 

Leaving the problem of distributions of estimates to statisticians, 

we will focus on the optimization problem used to identify a particu

lar estimate of 3 under the criterion & , 
P 

2,3.1 Regression Under (LAVE): 

The regression problem defined under the criterion when 

p = 1 is known as Least Absolute Value Estimation which may be ex

pressed as follows: 

minimize 1|x3 - yj1 _ 
p-x 

subject to 

D$=d (optional) 

Note that this formulation is completely equivalent to goal programming 
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based on the metric. Hence, LAVE is amenable to the methods 

of linear programming. 

2.3.2 Regression Under (MXNIMAX); 

Sometimes one is interested in the estimate of 3 where the 

criterion of fit is given as the metric when p = It can 

be shown that this is equivalent to 

minimize {sp)|(XS^^- Y^)|} 

which is known as the Chebychev criterion and describes a minimization 

of the absolute value of the maximum deviation. In this case, taking 

the limit as p->'~ in the formulation given as Problem GR2 results in 

the computationally equivalent problem: 

minimize e 

subject to 

D 3 = d (optional) 

-e - (X3)^ - - e for all i 

eER, e - 0. 

which is, clearly, amenable to the methods of linear programming. 

2.3.3 Regression Under 

Recognize that regression under and regression under 
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are just particular problems fran the more general family of regression 

problems based on the ^ metric. !I^ically, in 5, approximation 
P " 

one is concerned with regression problems based on the metric 

•when p^ [1,°°]. For pe(0,l) the metric does not induce a norm 

because the triangle inequality is reversed (see Section 3.1). More

over, for pE(0,l) the resulting optimization problem is not within 

the domain of convex programming because the objective function to 

be minimized is concave in the parameter 3. In general, we will 

> 
restrict attention to the case where p - 1—the computational as

pects of which are summarized as follows: 

Solution Procedure 

linear programming 

nonlinear (convex) programming 

linear programming 

It follows that the most caramon regression problems are based 

on the £ metric where p = 2 + e. That is, it is often instructive 
p ^ 

to look at the resulting estimates which are "almost in the 

sense that p is specified to be in some e-neighborhood of 2. 

In particular, empirical results by Forsythe [22] suggest a 

strong case for approximation where p = 1.5 under certain 

conditions concerning outliers in the data. Unfortunately, his 

resulting model is not amenable to the methods of linear programming. 

£ Estimate 

1 LAVE 

1 < p < CO A 

MINIMAX 
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In this study, Porsythe employed the gradient projection method of 

Fletcher and Powell (see [22]), Although this optimization procedure 

is theoretically sound, it requires the evaluation of a derived func

tion (first order derivative) and other complexities associated 

with nonlinear programming. 

We will not pursue the subject of approximation further 

since the intent of this analysis is to demonstrate the strong equiva

lence between discrete ^ approximation and what may be termed 

"generalized" goal programming. Just as regression has historically 

been based on the metric (without side conditions) so has goal 

programming been based, for the most part, on the metric. In 

both cases, these approaches afford significant computational advan

tages. Namely, the resulting problems are inherently linear. 
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3. A MINIMUM NORM APPROACH TO VECTOR MAXIMIZATION 

In this chapter we will revisit the linear version of the 

vector maximum problem and develop a solution procedure to identify 

efficient solutions. The results contained herein do not contribute 

significantly to the computational aspects of the problem. The 

primary enghasis of this chapter is the development of new insights with 

regard to the complex nature of multiple criterion decision-making. 

Moreover, these results are used as a foundation for the material 

presented in Chapter 4 where stronger con^nitational results are pre

sented for a more general problem. 

3.1 Mathematical Preliminaries 

In view of the fact that the results of this chapter are based 

on minimizing the norm of a vector (hence, a minimum norm, approach) 

we now present the following well-known results on norms and general 

solutions to linear systems. 

DEPTNITION 3.1 Let X be a linear vector space. Then a real-

valued function, denoted by | |, | |, which maps each element x in 

X into a real number is called the norm of x if it satisfies the 

following axioms : 

1. Ilxll - 0 for all xeX, 

2. 1|x|I = 0 if, and only if, x = 0 

3. I I ox II = IA|,||x|| for all aeR and each xeX, and 
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h. |jx + y|| - | |x|| + I |y| I for each. x,yex (triangle equality). 

Clearly, the norm is an abstraction of our usual concept of length. 

In particular, I |x|I defines a measure of length from the point 

X, in some vector space, X, to the origin, likewise, ||x-y|| 

defines a measure of length between the two points x and y in 

some vector space. Note that there exists a spectrum of functions 

which satisfy the properties of a norm. For pui^oses of our dis

cussion, we will utilize the well-known metric 

Xp: [zilxip] 

> 
which can be shown to induce a norm for p - 1. We will also 

have need of the following property of noms. 

PROEBRTY 3.2 Let x and y be any two elements of a normed linear 

vector space. Then 

l|x|| - l|y|| - l|x - y||. 

The solution procedure to be presented is based on a minimum 

nonn problem where the particular norm of interest defines the 

Euclidean distance. Furthermore, the approach is based on the 

generalized inverse approach to the solution of a linear system, A 
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conceptual interpretation of the relationship between Euclidean dis

tance and the generalized inverse solution to a linear system is 

now presented. 

Let the linear operator C define a mapping C : r"so 

that C is a Incn matrix and consider the two vectors 

* * k 
Z , Cx eR 

n * n 
•where x eR . If there exists an x eR such that 

* * 
Cx = Z 

•X* 
then Z is said to be an element of the row space of the matrix C. 

We represent this situation notationally as Z eR(C) and note that 

minimal | jCx - Z | | = 0 when Z eR(C) 

as a consequence of Definition 3*1. However, if Z /R(C) then 

there does not exist a vector xeR^ such that 

* 
Cx = Z . 

In this case, 

minion | |Cx - Z*|| >0 when Z*^R(C), 
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Now, let ZeE(C) be arbitrary and consider the general linear system 

Z = Cx. (3.1) 

Then a solution, x, to (3.1) is given as 

X = C*Z, 

where C denotes the nxk generalized inverse of the kxn matrix 

C, since 

Cx = cc z = z 

by the inverting property of the generalized inverse (see Appendix 

A). This solution x is, in general, not the only solution to the 

system (3.1)• One possible approach to the identification of all 

possible solutions is based on the concept of a null space of the 

transformation (i.e., matrix) C. 

DEFIIETION 3.3 Let C be an arbitrary kxn matrix, Then a 

vector x°eR^ is said to be an element from the null space of the 

matrix C (i.e., x°eK(C)) if, and only if. 
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With regard to the solution of system (3.1), if x is a solution to 

Cx = Z 

then ai^ vector 

. o 
X = X + X 

is also a solution to system (3.1) if, and only if, X%N(C) 

since 

Cx = C(x + x°) = Cx + Cx° = Cx = Z 

Thus, the set of all solutions to (3.1) can be obtained by adding 

each vector in N(C) to x. The uniqueness of a solution to (3.1) 

depends entirely upon whether or not N(C) consists of only the 

null vector (i.e., x = O) which is true if, and only if, C is 

nonsingular. In pursuit of a procedure to identify these alterna

tive solutions we present, without verification, the following 

intermediate result. Namely, 

{xlxeR^^, Z = Cx) = (xlxER^, x = C*Z + (l - C*C)Y, Yei^}. (3.2) 

Here, (l - C C)Y defines a vector from the null space of the matrix 

C (see [26]). Moreover, by allowing Y to span we can obtain 
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every vector in N(C) and hence, in view of (3.2), all possible 

solutions to (3.1) .  

It is often the case, however, that we are interested in the 

linear system 

Z = Cx 

•where Z/R(C). This, of course, implies that there does not exist 

a vector xeR^ such that Z = Cx (i.e., the system is inconsistent). 

The "least squares" property of the generalized inverse C now he-

comes an important issue. Assume ZeR^ is an arbitrary vector such 

that Z^(C) and consider the transformation 

* * 
Z = CC Z. 

* 
It is a consequence of the generalized inverse that Z is an ele-

ment of R(C), Furthermore, Z is that unique vector which has 

minimum Euclidean distance to Z fran among all vectors in E(C), 

Thus, 

* 
x = C Z 

is a solution to the linear system 

* 
Z = Cx. 
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This least squares property of generalized inverses can, perhaps, 

best be illustrated by considering an equivalent optimization prob

lem, Since this property will be useful later in the development, 

we present the following results for further reference. 

LEMMA 3*4 Let C be any kxn matrix and let be an arbi

trary vector. Then there exists a vector x, xeR*^, given as 

which is a (unique) solution to 

minimize I |x M 

subject to 

I |Cx - Z11 to be a minimum 

where 11. 11 denotes the Euclidean norm. 

COROLLARY 3.3 Let x = C*Z so that ||Cx - z|| = «. Then 

{x| ||Cx - Z|| = a)={x|x= C*Z + (I " C*C)y,YeR">. 

We will now proceed to construct and analyze a minimum norm prob

lem to identify a class of solutions to a linear version of the vector 
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maximum problem. Particular attention wi?l be focused on alternative 

optimal solutions to the problem in view of Corollary 3.5. 

3.2 A Classification of Efficiency 

The procedures developed by Evans and Steuer [2(3 are based 

on the characterization of the set E (i.e., the set of all effi

cient solutions) by identifying the elements of the set Eg(Eg = 

{xjxeE and x an extreme point of S}, S = {X|XER"', Ax = b, 

X = O)). As an alternative we will develop a procedure to charac

terize the set E by appealing to a subset E^^ defined below. 

The results of this chapter assume that the following condition is 

satisfied for the vector maximum problem, Problem LVM. 

O 
CONDIIIOM 3.6 Assume there exists a vector Z ER such that 

> Cx for all xes = {X|AX = b, x = O}. 

This condition will be given further attention later in this chapter. 

Iforeover, Chapter 4 provides the results needed to relax this assump

tion. 

In view of fact that Euclidean distance is determined by the 

metric for p = 2, consider the following extension of the 

concept of efficiency. 

DEFINITION 3.7 A point x°eS is said to be -efficient if, and 

only if, there does not exist another xeS such that 
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llCx - Z°|l < |lCx° . z°!| 

•vrtien Z° is a vector which satisfies Condition 3.6 and 

denotes the Euclidean norm. 

Just as relates to and characterizes E we now choose to 
B 

characterize E "by appealing to a subset E^ defined as 

^£2 ~ ^*1*^ and x is ('^-efficient}. 

Establishing the relationship between E^g and E we have the 

following result. 

LEMMA 3.8 Ejg c E. 

Proof Let %°eEgg be arbitrary and assume x°;^E. It then follows 

* 
by definition that there exists some point x eS such that 

Z° > Cx* - Cx°. 

Hence, 

1|Cx* - Z°|I < I|Cx° - Z°1|. 

But this implies that the result follows. 

We begin the development with a restatement of a linear version 

of the vector maximum problem given as: 
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PROBLEM A 

"maximize" Cx 

subject to 

xeS = (xlxeE^, Ax = b, x = o). 

The definition of Jl^-efficiency suggests the following minimum 

norm, problem. 

PROBLEM B Find an x°, if it exists, for which 

I |Cx° - Z° 1 I = mi nimum 1 |Cx - Z° I I 
XES 

The relationship between the minimum norm problem. Problem B, and 

the vector maximum problem. Problem A, is established by the follow

ing result, 

o 
LEMMA 3.9 If there exists a solution x which solves Problem B 

then 

1. x° is ^g-efficient for Problem A, and 

2. x° is efficient for Problem A. 

Proof The result follows immediately from Definition 3.7 and 

Lemma 3.8, 
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Recall from Section 3.1 that CXy, where Xy is given as 

= C*Z° + (I - C*C)Ys YGR*, 

defines that vector in R(C) which is a minimum Euclidean distance 

to Z°. In view of this result, consider the following problem and 

corresponding Lemma. 

PROBLEM C Find a Y, if it exists, such that 

1. AXy = A(C*Z° + (I - C*C) y) = b, 

* O / # . ^ 
2. Xy = C Z + (I - C C)Y = 0, 

3. YéR^. 

t.hwIA 3.10 If there exists a solution Y° which solves Problem C 

then 

1. x solves Problem B, and 

Y 

2. X is 2g-efficient for Problem A. 
Y° 

^oof. If Y solves Problem C then, clearly, x ^es so x is 
Y Y° 

feasible for Problem B. Moreover, in view of Corollary 3.5, x 
Y° 

is also optimal for Problem B and hence, by Lemma 3.9, x is 

Y 
efficient for Problem A. 
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Although Problem C is amenable to the methods of linear programming, 

this inteimediate result is not sufficient. In particular, it is 

quite possible that there may not exist a feasible solution to 

Problem C even though there exists solutions to Problem B. In-

feasibility of Problem C indicates that 

{x^ [Cx^eR(c)5 I |Cx^ " 2^1 I minimum^ H g = 0, 

Consider the following variant of Problem C. 

PROBIEM D 

minimize ||6|| 

subject to 

1. Ilcx - (Z° - 6)11 =0, (3.5) 

2. xeS, ... (3.6) 

3. «SeR^, S = 0. (3.7) 

With regard to the feasibility of Problem D, we have the following 

result. 

LEMMA 3.11 Assume Condition 3.6 is satisfied . Then Problem D is 

feasible if, and only if. Problem A is feasible. 
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/ * 
Proof. Let (x ,6 ) denote any feasible solution to Problem D, 

Then, in view of (3-6), x eS and hence x* is feasible for 

* 
Problem A. Conversely, let x denote any feasible solution to 

Problem A. Then (3.6) holds and letting 

* o * > 
6  =  Z  -  C x  = 0  

satisfies (3.5) and (3.7) under Condition 3.6. 

With regard to the optimality of Problem D, we have the following 

intermediate result. 

LEMMA 3.11 If (x°,ô^) solves Problem D and 6*^ = 0, then 

1. x° solves Problem B, and 

2. x° is Kg-efficient for Problem A. 

Proof. When 6° = 0, Problem D is equivalent to Problem C. 

Hence, the result follows as a consequence of Lemma 3.10. 

Problem D has the following intuitive interpretation. If we 

can find a vector Z eR^, Z = (Z° - ô°)eJ2 = {Z|Z.= Cx, xeS) which 

has minimum Euclidean distance to Z° from among all vectors in n, 

then any xeS for which | |Cx - Z | | =0 solves Problem B. This 

problem can be simplified into a more computationally attractive 
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problem by noting that 

|Cx - (Z° - 6)I I = 0 <=> (Z° - 6)eR(C). 

But we can guarantee that (Z° - ô)eRCC) by,enforcing the (linear) 

condition that 

(Z° - 6) = CC*(Z° - 6). 

Furthermore, we can now exploit the generalized inverse by utilizing 

the fact that any x for which ||Cx - (Z° - 6) | [ is a minimum can 

be represented as 

= C*(Z° - 6) + (I - C*C)Y 

which suggests the following extension of Problem D. 

PROBLEM E 

minimize ||6|| 

subject to 

1. Ax = AUC (Z - 6) + (I - C C)Y] = b 
Y J 0 

2. Xy g = C*(Z° - 6) + (I _ C*C)Y = 0 
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3. (Z° - 6) = CC*(Z° - 6) 

4. yeR^, 6 = 0. 

Since the particular norm employed in the objective function 

is the Euclidean norm ,and since 6 must satisfy the restriction 

6 = 0, Problem E is amenable to the methods of quadratic (convex) 

programming. Moreover, available software will identify the optimal 

solution since the objective function assumes the quadratic form 

minimize y*Py + O'y 

, „n+k 
where yeR , 

y  =  
6 

Y 

and P is of the form 

P = 

nxn 

kxn 

0 
nxk 

kxk 

which is positive semi-definite. With regard to the optimality of 

Problem E,we have the following key result. 
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LEMMA 3.12 If (y°j<S°) solves Problem E, then 

X ^ ^ = C*(Z° - 5°) + (I - C*C)Y° 
Y°,6 

is &g-efficient for Problem A. 

Proof. Note that if x° solves Problem B then, in view of Lemma 

3.9, x° is Gg-efficient for Problem A. Furthermore, since 

Problem E is equivalent to Problem D, it suffices to show that if 

(x°,6°) solves Problem D then x° solves Problem B. Thus, assume 

(x°,ô°) solves Problem D. Then 

|]Cx° - (Z° - 6°)11 = 0 

if, and only if, 

C^x° - Z° + 5? = 0 for i=l,...,k 

or, equivalently 

-C^x° + Z? = <S? for i=l,...k. 
•x i 

Thus, in matrix notation 

-Cx° + Z° = 6° 

or 

||-Cx° + Z°|| = ||C%° _ Z°|| = ||6°||. 

But this implies that 
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min I |6| I = min ||Z° - (Z° - 6)|| = mln ||Cx - Z°|| = ||cx ^ ^ - Z°| 

6=0 6=0 xeS y 

Hence, x° solves Problem B. 
7°, 4° 

3.3 Characterization of 

Given that Problem E can be used to define a solution x°, 

x°eE^, we would now like to characterize the set E^. Let fi 

denote the set of all feasible solutions to Problem E and let 

(Y°,5°)en be optimal for Problem E. As a consequence of Corollary 

3.5J for each yel^ such that (Y,6°)eO we have 

x^ = C*(Z° - 6°) + (I - C*C)Y (3.8) 

which defines an Ag-efficient solution to Problem A. Moreover, 

in theory we can span the set Ej^g by finding all possible 

such that (Y,6°)efi and x^ (defined 3*8) is contained in E^g. 

Of course it may be possible that the subset E^g, contains 

an infinite number of points. Although we can, in theory, identify 

each element of E^g, we seek a procedure to guarantee finiteness 

of the algorithm. In view of this, it is proposed that the iteration 

of all alternative optimal solutions to Problem E will provide a 

meaningful characterization of the set E^g, the elements of which 

are determined by (3.8). 

The approach presented in this chapter poses some serious compu

tational questions. In particular, the fonmilation given as Problm E 
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is not completely equivalent to Problem A in the sense that feasi

bility (and hence optimal!ty) in Problem E does not guarantee 

feasibility (and hence optimality) in Problem A. Problem E is appro

priate and valid under the assumption that Problem A has a feasible 

solution and that there exists a vector Z° which satisfies Condi

tion 3.6. note that the specification of Z°, assuming Condition 

3.6, is trivial, (it is sufficient to define each of the k compo

nents of Z° to be an arbitrary large positive number. ) Perhaps 

the most significant weakness of this approach is the confutation 

of the generalized inverse of an arbitrary matrix—this in itself 

is a significant computational task. 

!Qie computational aspects of this approach not withstanding, 

the development does provide insight with regards to the conçlexities 

of multiple criterion programming. In particular, this procedure 

provides a way to characterize the set of all efficient points by 

appealing to a subset E^^E. This partitioning of efficient so

lutions based on the matrix suggests other characterizations 

based on alternative metrics. . Such is the motivation behind 

and primary thrust of the following chapter. 
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h, MIKIMJM H NORM PROBLEM AND CONVEX PROGRAMMING 
P 

In the previous chapter a linear version of the vector maximum 

problem was recast as a minimum problem. This resulting 

problem was shown to be sufficient in the sense that a solution to 

the minimum norm problem defined a solution to the vector maximum 

problem. Since particular attention was focused on the Euclidean 

norm, it followed that the branch of convex nonlinear optimization, 

known as quadratic programming, was appealed to as the solution pro

cedure. Moreover, an approach to the characterization of the set 

of all efficient solutions was presented based on the properties of 

the generalized inverse solution of a linear system. The insight 

developed with regard to the minimum norm problem suggests a 

similar approach for the more general ^ norm problem. Follow

ing in spirit the approach of Chapter 3, the primary emphasis of 

this chapter is focused on linear multiple objective programming 

problems. Within this context we will review and extend the concept 

of efficiency and construct a sufficient minimum norm problem. Since 

this more general problem is based on the minimum ^ norm, it 

follows that a more general convex programming solution procedure 

be employed to identify the solutions of interest. To this end, it 

will be shown that a geometric programming problem can be constructed 

to serve our needs. Accordingly, a dual geometric programming formu

lation will be given with some rather extraordinary properties. 

Before constructing the primal and dual geometric programs. 
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let us restate the linear multiple objective programming problem as: 

PROBLEM A 

4.1 Another Classification of Efficiency 

Recognize that a decision-maker might be overcome with the set 

of All efficient solutions to a linear multiple objective program

ming problem of the form given as Problem A. In Chapter 3 a proce

dure was presented whereby the decision-maker could characterize 

the set E with a subset Consider now, the more general 

concept of Z -efficient solutions and the resulting subset E„ 

to be used as a characterization of E. As with the definition of 

Jig-efficiency, the definition of (-^-efficiency depends critically 

on Condition 3.6 -which we restate for convenience of reference as: 

CONDITION 4.1 Assume there exists a vector Z°eR^ such that 

Z° > Cx for all xeS = {xjxeR^, Ax = b, x = oL 

In view of the fact that the metric 

"maximize" Cx 

subject to 

x^S = {xlxeR^, Ax = b, x = oh 
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induces a norm, which we will denote as the norm 11 .| |p, con

sider the following definition of efficiency. 

DEFDJITIOK k.2  A point x°eS is said to be A ̂ -efficient if, and 

only if, there does not exist another point xeS such that 

- Z°llp < l|Cx° - z°| Ip 

where Z° is a kxl vector which satisfies Condition 4.1. 

For the sake of completeness it should be pointed out that 

the Ap metric induces a norm provided that p - 1. For pe(0,l) 

the triangle inequality given in Definition 3.1 is reversed and, 

hence, the resulting function does not satisfy all of the required 

properties of a norm. In this case, we can view the norm 

as a "quasi-noim" (see [2]). 

It can be shown (see [21 ) that any nom defined by the 

metric, pe[l,"), is convex in the variable x—a very useful prop

erty that will be exploited in later sections. Throu^out this 

chapter it is assumed that the noim, I I.lip, is defined by the 

metric &p where pG[l,"). 

As a consequence of Definition 4.2, we now introduce the 

following definition: 

= {xlxeS and x is & -efficient}. 
iiP ' P 
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Thus, a stronger version of Lemma 3.8 is now given as 

LEMMA 4.3 Ç E. 

Proof. The proof of this lemma follows the proof of Lemma 3.8 where 

the Euclidean nonn is replaced with the general norm. 

Following in spirit the initial development of Chapter 3> con

sider the minimum norm problem: 

PRQBT.'RM B Find an x°, if it exists, for which 

1lcx° - Z^ l l p  = minimum I I c x  - Z° l I  
xeS ^ 

The relationship between this minimum norm problem and Problem A 

is given in the following result. 

LEMMA k.4 Assume there exists an x° which solves Problem B. Then 

1. x° is & -efficient for Problem A, and 
P 

2. x° is efficient for Problem A 

Proof. The proof follows from Definition 4.2 and Lemma 4.3. 

But Problem B may be expressed equivalently as: 
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PROBLEM C 

minimize I kMp 

subject to 

I |Cx - (Z° -Y) HP = 0 

xeS 

YGR^jY = 0. 

Superficially, Problem C appears to be a more complex optimization 

problem. However, it will be shown that the resulting problem has 

a set of constraints that are virtually linear. That is, an 

equivalent set of linear constraints can be constructed as a substi

tute for the current set. Of more immediate interest are the fol

lowing relationships between Problems A and C. 

LEMMA k.5 Problem A is feasible if, and only if. Problem C is 

feasible. 

Proof. This proof follows the proof of Lemma 3.11 where the 

Euclidean norm is replaced with the more general norm. 

LEMMA 4.6 If (x°,Y°) solves Problem C, then 

1. x° is A^-efficient for Problem A, and 

2. x° is efficient for Problem A. 
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Proof. The proof of this result follows as a consequence of 

Lemma 4.4 and the relationship between Problems B and C. 

4.2 An Equivalent Geometric Program 

The development of a solution procedure for & -efficient solu-
P 

tions dictates a more generalized solution procedure than that 

presented in Section 3.2. In particular, since (^-efficiency is 

based on a minimum distance, it followed that quadratic pro

gramming provided the computational support. However, we are now 

faced with a more general convex programming problem where geometric 

programming can be employed. To facilitate the construction of 

this geometric program we first note that 

lïlij-

k 
s Ir^P 
1=1 

VP 

i=l 3-

since y - 0. Moreover, it follows that 

minimize I  Y/ 
i=l ^ 

1/P 

is equivalent to 

minimize Z Y. 
i=l ^ 

since p - 1. With regard to the constraint set of Problem C we have 
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if, and only if. 

or 

|Cx - (Z° - y)|i = 0 

il 'il 
n 

1/p 
= 0 

Z C,,x, 4" Y . " Z,  — 0% Î—l####yke 
j=l J ^ ^ 

Observe that this system may be expressed equivalently as 

^ o < 
Z c, ,x. Y. " 2, •" 0) x=l, • * • ,1c 

j=l ^ ^ 

n 
- E C..X, - Y. + Z. - 0, i=l,,..,k 

.^1 13 J X 1 ' 

In view of the above transformations we are now prepared to present 

an equivalent convex programming problem given as: 

PROBLEM D 

I Y P 

subject to 

minimize ^ Y / 
i=l ^ 

n 
X—IJ #E*YK 

=i/j 1—1 

n 
1—1J • • • ̂111 



www.manaraa.com

62 

J —1)•••J n 

To construct the geometric programming problem of interest 

we utilize the following one-to-one transformations (see Appendix C) 

TRANSFORMATION L 

Jin(w ) 
V 

J—X; • • • jii 

^i = ""'Vi) 
1—Xj #*#yk 

b. = 
1 &n(Bi) 1—X^ • • • jUi. 

An(Ui) 1—X ̂ • ##yk 

The resulting convex programming problem will be of the form: 

PROBLEM E (Primal Geometric Program) 

subject to 

minimize G(w;p) 

X i—Xj # # *jk 

n 
w n+i - 1 i=l,...,k 

bT^ TT w.ij - 1 
j=l ^ 

1—X G » # # 



www.manaraa.com

63 

w. "" 1 J—Ij « » • jH+k 
J 

with the implicit restriction that w. > 0 for all j. 

Here we make note of the fact that >0 for all i as a con

sequence of the logarithmic transformations employed. Moreover, if 

the objective function G is a posynomial then Problem E is amenable 

to the methods of geometric programming, for future reference 

we will let 0 define the set of all feasible solutions to Problem E. 

The task of interest is the construction of a posynomial G, which 

is a function of the vector w and the parameter p, such that if 

w° solves Problem E then we can utilize our logarithmic transfor

mations to define a solution x° which solves Problem D. 

In pursuit of this objective function G(w;p) we first note 

that, ideally, we seek a posynomial G such that 

k 
minimize S y.  <H> minimize G(w;p) 

i=l ^ 

under Transformation L. Research to date has not yielded such a 

function. However, it is sufficient to identify a function G such 

that 

k 
minimize G(w;p) => minimize ^ 

i=l ^ 

under Transformation L since this is sufficient to solve Problem D. 
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If we could define 

G = EXP Z "Y/ 
i=l ^ 

then we are done. However, such a function is not a prototype 

posynomial. Consider, now, the expression 

EXP A = EXP 
1=1 

J 

where 

\ - ° 

where w^^^ - 1. Clearly, 

minimize EXP 
k 
Z 

1=1 
(«ïiCVi»' 

may be expressed eqiiivalently as 

or 

minimize it EXP 
1=1 

maximize t' EXP 
1=1 

But this is equivalent to 

maximize 
k r 1 

EXP [^-(An(w^+^))P 
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or, 
k r p 

maximize I  S-nlEXP I 

•which sinçplifies to 
k 

maximize Z -  (  &n(w .  )  )  
i=l 

or, equivalently, 
k 

minimize E ( %(w ,. ))̂ . (4.1) 
i=l 

Although this intermediate expression will, in theory, yield the 

desired result, the presence of the logarithmic function con^licates 

the solution procedure. Further analysis of the functional suggests 

that we consider the relationship 

Vl - *=(Wn+i)' 

which is true for any w^^^ > 0, Consequently, for p - 1 and 

Vi -

- ten(Wn+j^))^j 1=1,...,k (4.2) 

It then follows that an upper bound on the functional of interest 

in (4.1) is then 

k k 
F]̂ (V;P) = Z (AN(Ŵ Ĵ̂ ))̂  - Z Ŵ ^̂  = F2(W;P). (4.3) 

i=l i=l 

This intermediate result is of particular significance. Recognize 
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first that if we define 

G(w;p) = f^(w;p) 

then Problem E is conç)letely equivalent to Problem D under Transfor

mation L. If defines the set of all feasible solutions to 

Problem E, then Problem E may be expressed as 

minimize f^(w;p) (4.4) 

subject to 

wefi. 

It is a well-known fact (see [4l] ) that w° solves (4.4) if 

w° solves the problem 

minimize f2(w;p) 

subject to 

wen 

and 

f]̂ (w;p) - fgfwiP) (4.5) 

But, in view of (4.2) and (4.3), expression (4.5) is always satisfied 

for any weO. Thus, we conclude at this point that it is sufficient 

to solve the following program. 
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PROBLEM F 

k 
minimize Z . 

i=l " 
subject to 

we 52. 

Observe now that the resulting program, Problem P, is amenable to 

the methods of geometric programming where the objective function is 

a posynomial and the constraint functions are single-term posy-

nomials, or monomials. Moreover, as a consequence of our develop

ment, in particular expression (4.3), ve can summarize our results 

thus far by stating the following. 

LEMMA 4.7 If w° solves Problem F, then there exists an x° 

defined by Transformation L which solves Problem D. 

Proof. If we define 

k 
G(w;p) = Z +<)) 

i=l 

then, clearly. Problem E is completely equivalent to Problem D 

under Transform»ition L. Thus, the sufficiency of Problem F fol

lows in view of the fact that expression (4.3) is valid for any we(2. 

Note that Problem F can be used to define a dual geometric pro

gramming problem (see Appendix B). This resulting dual problem is 

also amenable to the methods of convex (nonlinear) programming since 
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the dual problem is one of maximizing a concave function over a set 

of linear (convex) constraints. However, in view of the relation

ship between linear programming and geometric programming with 

monomial functions (see Appendix C), it behooves us to consider the 

feasibility of yet another surrogate objective function which is 

monomial. 

Consider specifying G(w;p) to be a monomial function of the 

vector w and the parameter p such that 

k 
Z - G(w;p). 
i=l * 

Assuming such a monomial function exists, this suggests the follow

ing extension of Problem F, 

PROBLEM G 

minimize G(w;p) 

wen 

and 
k 
E - G(w:p) (4.6) 

i=l 

To demonstrate that such a monomial function always exists we have: 

subject to 
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LEMMA. 4.8 Let u^, be real numbers that satisfy 1 

for i=l,... ,n. Then 

" u.5-'n° U.I' 

1=1 ' 1=1 ' 

for any pe[l,<»). 

Proof, Observe that 

n ^ n n 
n ir u.^ = Z ÏÏ u. . (4.7) 
i=l ^ i=l i=l ^ 

Now, to establish the validity of this lemma it suffices to show that 

p < ^ p 
u. - n u. for j=l, ...,n. 
^ i=l ^ 

But this follows immediately since u^ - 1 for all i and peCl,»), 

As a consequence of Lemma 4,8, if we now define 

k 
G(wjp) = k IT w; 

1=1 ^ 

then Problem G takes the form 

k 
minimize k TT Ŵ , . 

wEfi 1=1 

Note that explicit inclusion of expression (4,6) is unnecessary in 
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view of the fact that wefi implies that w = 1. Hence, expression 

(4.6) will always be satisfied, in view of Lemma 4.8, which suggests 

that a solution to Problem D may be obtained by solving the program 

given as: 

PROBLEM H 

k 
minimize G(w;p) = k w^.. 

. , n+i 1=1 

subject to 

-1 ^ 
U. ^ 

j=lL 

."j Vi -

n 

i—1J 

X X—13 ###yk 

-1 ^ < 
B. IT Wj ̂  - 1 i=l,...,m 

j=l J 

w~^ - 1 j=l,...,n+k. 
t) 

Before investigating the corresponding dual geometric pro

gramming we will make some definitions to obtain notational simpli

city. Since each function has a single term (monomial functions), 

it follows that each function will have one associated coefficient. 

Thus, we incorporate the substitutions: 

D = k 
o 

i=l,...,k 

\+i ~ ̂ i i-l,...,k 
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®2k+l ~ ®i 

®2k-ttn+i ^ ̂  

i—e # * I)in 

1—1^ • • • 

Likewise, for the exponents of the variables, v., we define: 
V 

E = 

°l,n 1 (P»*-*'P)l,k 

''k.n I ^k,k . 

-S,n 1 "̂ k,k 

1 

\,n j ®m,k 

"^(n+k),(n+k) 

so that Ejj is (3k + m + n + l) X (n + k). Here the index on 

the element e. . when i = 0 denotes the jth element in the first 
10 

row of E, Accordingly, Problem H may be simplified notât ionally 

and expressed as: 

PROBLEM H' 

subject to 

N e . 
minimize D ^ 

N e. 

"j 

w .  > 0  
W 

10 
1—1,•••,M 

j=l,...,N 



www.manaraa.com

72 

Clearly, Problem H' is a geometric programming problem with monomial 

functions throughout. Summarizing our development thus far, we have 

the following inteimediate result. 

IiEMMA h.9 If w° solves Problem H, then there exists an x° 

defined by Transformation L which solves Problem D. 

Proof. Lemma k.J establishes the fact that if w° solves Problem F 

then Transforation 1 can be used to define a solution x° which 

solves Problem D. Thus, the validity of this result is established 

by showing that if w° solves Problem H then w° solves Problem F» .. 

But the sufficiency of Problem H for Problem F follows as a conse

quence of lemma 4.8 which implies that 

^ V < ^ w^ 

when wen, 

4.3 A Dual Problem 

Consider, for a moment, the ramifications of Lemma 4.9. The 

geometric program, Problem H, is not completely equivalent to the 

mi ni mum norm program of interest-Problem D. However, Problem H 

is sufficient for Problem D in the sense that a solution to Problem H 

can be used^in view of Transformation L, to define a solution to 

Problem D. From a computational perspective, this result appears 

to be of little value since the original problem of interest is a 
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linearly constrained minimization of a convex function. Clearly, 

the highly nonlinear nature of Problem H indicates that a sophisti

cated procedure be employed to obtain the solution. However, as a 

consequence of duality in geometric programming, we are now in a 

position to construct a dual problem which exhibits significant 

computational advantages. Moreover, as a consequence of the first 

and second duality theorems of geometric programming (Theorems B.2 

and B.3s respectively, in Appendix B), the resulting dual problem 

is completely equivalent to its corresponding primal. Problem H. 

The dual geometric programming problem corresponding to Problem H' 

is given as: 

PROBLEM I Find a vector, such that 

(normality) 

(orthogo
nality) 

(positivity) 

where 

v( = minimum ) 

'il M 
v(6) = IT 

i=0 

V M A.(6) 
TT % (6) ̂  
i=0 ^ 

subject to 

X^(6) = 1 

M 
I e. . 6. = 0 

i=0 10 1 
j—1,2,•.. ,N 

6^ = 0, i=0,i,... ,M 
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Here %%(&) = for i=0,l,...M as presented in Appendix B. 

Observe that the resulting dual problem is linearly constrained but 

that the objective function, v(5), is quite complex and highly non

linear. With, this problem as with the corresponding primal problem, 

Problem H, the computational advantages are, at best, questionable. 

Fortunately, the objective function can be simplified significantly to 

M 
v(6) = TT 

i=0 

M 
= D TT 

°i=l 

\ J 

M X.(6) 
ir \As) ̂  

i=l 

V 

A, 

6. 
a. 

(5,) ̂  

M S, 

Also, the monotonicity of the logarithmic functions (see [l6]) 

guarantees that 

maximize v(ô) 

is completely equivalent to 

maximize V(6) 

where 

V(6) = £n(v(6)) = &n 
M 5. 

"'ill  ̂

Thus, the dual objective function can be expressed equivalently as 
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M 
V(6) = &n(D^) + E &n(D.)6 . 

° 1=1 ^ ^ 

Here, of course, > 0 for ail i as a consequence of Problem E, 

Ihat is, the are coefficients for the monomial functions in 

Problem E which are guaranteed to be strictly positive. Reverting 

back to these original coefficients and applying Transformation L, 

it can easily be shown that the dual objective function assumes the 

form 

m = %n(k) + Ï - 4. Z 
X—1 1—1 X—1 

3k+m+n 
+ E &n(l)a. 
i=2km+l ^ 

Quitting constant terms and simplifying V("S) we have that the 

dual problem, expressed in terms of the original coefficients, is 

given as 

PROBLEM J 

subject to 

k k m 

ih ' iii +1=1 -tl<2k+i 
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n,k ! 
nT 1 
n,k 1 

I 

I I k,m 

-I 

3k+m+n 

\o4 

-p 

and 

6, : 0, i—1 )2g#**2 3krtiiHn # 

As a consequence of the first duality theorem of geometric 

programming , (AppendixB, Theorem B.2), we can recover the optimal 

solution to the primal problem, given that solves the dual 

problem, "by solving the system; 

n Ï = v(«°) 
j=l ^ 

N e 
D. TT ( w . )  =  1 i=l,...,M for which 

^ SJ > 0. 

Or, equivalently, we can determine &n(w°) j=l,...,N by solving 

the linear system: 

N o « 
to(D ) + Z e . fei(w.) = &n(v( 6 )) 

o 03 J 

H 
to(D. ) + Z e, . to(w°) = 0, i=l,...,M for which 

^ «° > 0. 
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The solution to the linear programming problem, Problem J, is of 

particular significance as indicated by the following result, 

LEMMA 4.10 If there exists a which is an optimal 

solution to Problem J, then 

1. there exists some w° which solves Problem H, 

2. X? = Ji-nCw?), j-l,...,n+k solves Problem D, and 
J J 

3. x° = (x^, Xg; .'.,,x°) is &p-efflcient for Problem A. 

Proof, (l) follows as a consequence of the theory of duality in 

geometric programming (see Lemma B.l, Theorems B.2 and B.3 of 

Appendix B). Lemma 4.9 and Transformation L, under (l), then imply 

(2), Finally, the equivalence of Problems C and D together with 

Lemma 4.6 imply (3). 

Before proceeding further with extensions of this approach, it 

is instructive to summarize the procedure developed thus far. Re

consider the linear multiple objective programming problem of the 

form given in Problem A. Under Condition 4.1, we can construct 

a minimum norm problem. Problem C, the solution of which is, 

by definition, efficient'for Problem A. Utilizing a sequence 

of logarithmic transformations and upper bounding inequalities, we 

have constructed a geometric programming problem which is "con^nita-

tionally sufficient" in the sense that it identifies solutions to the 
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minimum & norm problem. Problem C. An application of duality 
P 

and additional transformations result in an equivalent dual prob

lem -which can be solved directly by linear programming techniques. 

The flow diagram in Figure 1 describes this equivalence chain. 

Vector Maximum 

Problem 

JL 
Condition 4.1 

Minimum & Norm 
P 

Problem 

Primal Geometric 

Programming Problem 
<4 

Equivalent Dual 

(Linear Program) 

II 

Dual Geometric 

Programming Problem 

Figure 1. Equivalence Structure With Condition 4.1 

4.4 Extensions For A More General Problem 

In this section we present the machinery needed to extend the 

results of the previous sections. In particular, we will focus 

attention on a more general problem and, effectively, sharpen the 

results presented thus far. Recall that the minimum norm program, 
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Problem D, is sufficient for Problem A only under the rather strong 

assumption given as Condition 4.1. Motivation for the development 

of a procedure which permits the relaxation of Condition 4.1 is based 

on the potential application of these results to such problem areas 

as linear regression and goal programming. As presented in Chapter 2, 

goal programming, to date, has been concerned with maximizing a mea

sure of goal achievement (achievement is assumed to be synonymous 

with utility) where the particular measure is based on the familiar 

metric. If indeed one could relax Condition 4.1, then this pro

cedure could be applied to what may be termed generalized goal pro

gramming or, perhaps, convex goal programming as recently introduced 

by Charnes and Cooper [?] and studied by Chames, Cooper, Klingman, 

and Kiehaus [8J. Let us revisit Condition 4.1 and consider the impli

cations of this assunçtion with regard to a more general problem. 

Recall that Problem A has a constraint set of the form 

problem (see Section 2.2), this condition is clearly unwanted. For 

example, a generalized goal programming problem could be formulated as 

S = CXIxcr", AX = b, X = 0} 

Condition 4,1 states that there exists a kxl vector such 

that Z° > Cx for all xeS. In the context of a goal programming 

minimize 
xcS 
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where is an arbitrary vector not subject to the assumption 

that Z° > Cx for all xeS since the goal formulation here is one 

of simultaneous attainment as opposed to simultaneous maximization. 

Such is also the formulation of constrained regression problems 

which we will consider further in the next chapter. Without loss 

of generality the more general problem may be stated as 

PROBIEM K 

minimize | |Cx - Z° 11^ 

subject to 

xeS = {XIAX = b) 

o 
where pe[l,®) and Z eR is arbitrary. 

Observe that we have redefined S so that explicit restriction 

of the vector x to the nonnegative orthant is relaxed. Cer

tainly, some or an of the con^onents of x could be constrained 

to be nonnegative within the new formulation of S if desired. The 

significance difference in this formulation is that Z° is arbi

trary so that Condition 4.1 is not appropriate. Before examining 

the ramifications of Condition 4.1 and the more general problem 

we follow, in spirit, the transformations presented earlier in this 

chapter and expresses Problem K eguivalently as 
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PROBLEM M 

minimize ll^llg 

subject to 

I Icx - (Z° - Y) 11^ = 0 

Ax = b 

xel^, yeR^. 

o k. 
Since Z eR is now arbitrary, it follows that the deviation vector 

must have components which are unrestricted in sign. This is 

precisely the motivation behind Condition 4.1 in that this assump

tion insures that 

Z° - Cx = Y = 0 

which is essential in the proof of Lemma 4.5. For the more general 

problem a substitution of variables can be used to circumvent this 

dilemma so that the results presented thus far are valid without 

enforcing Condition 4.1. Let us re-state Problem M as 

minimize !!Y 11^ 

(x,Y)ef2, 

where ÇI denotes the set of all feasible solutions to Problem M, 

and note that this program may be expressed equivalently as 
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subject to 

minimize ||y|[^ 

\ y \ Ip - I |y| Ip (4.8) 

(x,Y)eO 

_k > 
yeR , y = 0. 

Note further that restriction (4.8) is guaranteed to be satisfied 

•when the restriction 

< < 

"^i " ̂ i ' ̂i i=l,...,k 

is enforced. Applying these substitutions we have that 

minimize 1 ly 11, 
P 

subject to 

< < 
-Yi - Yi - y^ 1=1,...,k 

(x,Y)en 

yeR^, y = 0 

is sufficient for 

minimize Inllp. 

subject to 

(x, y) en 
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Here, of course, pe[l,"). Thus, a counterpart to Problem D which is 

sufficient for the more general problem, Px-oblem M, is given as 

PROBLEM W 

subject to 

minimize ||y| 

Z C..X. 'f'Y» " Z. "" 0 1—1, ##*,k 
j_l J i ^ 

n < 
1 - c..X. - Y. + Z? - 0 i=l,...,k 

iJ J 1 1 

^ < 
Z EL. .x. "• ID, " 0 1—1* # e # %331 

j=l J 1 

Y. - y. - 0 i=l,...,k 
1 1 

Y. - y. 

^i 

-Y. - y\ - 0 i=l,...,k 

-y. - 0 i=l,...,k 

yeR^, xeR^ 

This resulting formulation of Problem N is identical, in construction, 

to the linearly constrained norm program given as Problem D 

since nonnegativity of the vector y ensures that 

minimize I|y| 1^ 

is equivalent to 
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minimize ^ y? • 
i=l ^ 

It then follows that a sufficient geometric program with monomial 

flmctions can now be formulated if we redefine our logarithmic trans

formations to be 

TRMSFOBMAirON L' 

^i = X—X ̂ ^ XI 

^i = X—Xj *##yk 

yi = ""'VkH-i) 
i^X2*##yk 

i—Xj•••gd 

il i—Xj *##yk 

Utilizing our new transformation, Transforation L', the geometric 

program can be expressed as 

PROBLEM 0 

k 
minimize k ir w?., . . 

j=l 

subject to 

" " -1 1.1,...,k 

U. ir [ w. w"^. - 1 i=l,...,] 
i «J n+i 
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. n a. 
B. îT - 1 
^ j=l ^ 

^n+i \+k+i " ̂  ^ 

-1 -1 < _ . - , 
Vi Vk+i " ̂  . 1=1,...,k 

Vk+i " ̂  i=l,...,k 

with the inçlicit restriction that > 0 for i=l,...,n+2k. 

Observe that Problem 0 is identical in construction to the geometric 

program given as Problem H. Therefore, it follows that the substi

tutions for coefficients: 

D = k 
o 

D. = U.^ i=l,...,k 
11 ' 

\+i ̂  ̂ i i=l,...,k 

°2k+i " ®i^ i=l,...,m 

^sk+m+i = 1 i=l,...,3k 

and the substitution for exjjonents of the variables w. : 
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E = 

°l,n °l,k 

^k,n ^k,k \,k 

'"^kjix "^k,k ^k,k 

0 , 0 , 
,n ni,k m,k 

\,n k̂,k ~̂ k,k 

%k "i^k,k ~^k,k 

\,k ^k,k '\,k 

J M,W 

permit Problem 0 to be expressed more conveniently as 

subject to 

^ ®ii 
minimize D ^ w. 

° j=l ^ 

^ ^ij < 
D. w. ̂  - 1 
^ j=l J 

i=l,...,M 

Wj > 0 J—Ig • • • jlî» 

Accordingly, the resulting dual geometric program is of the form: 

PROBLEM P 

M 
maximize 

i=0 % M X (6) 
Tt X (6) ̂  

i=l 
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subject to 

X (6 ) = 1 
o 

(normality) 

M 
^ e_. = 0, 
i=0 1 

j=l,...,N (orthogo
nality) 

6. = 0, 1—1) * # * jjM (posi"" 
tivity) 

•when («S) = 6^ for i=0,l,...,M as presented in Appendix B. 

As with Problem J, this dual problem can be sinçlified considerably 

and expressed equivalently as: 

PROBLEM Q 

subject to 

maximize S 
i=l 

k m 

^i Vi " ̂i^2k+i 1=1 1=1 

m T T 
C , -C , A 0 , 0 , 0 . 
n,k n,k n,m n,k n,k n,k 

^k,k "^k,k \,m \,k "^k,k °k,k 

^k,k ^k,k \,m "^k,k "^K,k "^k,k 5k+m 

'o\ 

n 

k 
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and 

6^ - 0, i=l;2,...,5k+m. 

The solution procedure, when extended to deal with a more general 

problem of the form 

minimize ||Cx -

subject to 

xeS = (xjxeR^, Ax = b,} 

liC 
where pGEl,") and Z£R is arbitrary,is potentially a signifi

cant computational result. In its full generality it permits such 

a convex nonlinear optimization" problem to be solved by linear pro

gramming techniques. Indeed the key results of this section on 

ok • • 
extensions are that Z GR can be arbitrary and that the decision 

vector X need not be constrained into the nonnegative orthant. 

Moreover, the relaxation of Condition 4.1 permits the exclusion 

or inclusion of the set S to be optional. These extensions, 

therefore, expand the scope of the procedure to include the general

ized linear regression problem (referred to as the 5,^ approxi

mation problem in Chapter 2) with or without linear side conditions 

as well as the generalized goal programming problem based on the 

metric. This equivalence chain is described in Figure 2. 
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Equivalent Dual 

(Linear Program) 

Dual Geometric 

Programming Problem 

Minimum & Norm 
P 

Problem 

Primal Geometric 

Programming Problem 

Generalized Goal 

Programming ( ) 

<=> Discrete I 

Approximat ion 

Figure 2. Equivalence Structure for pe[l,") 
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5. ASPECTS OF DUALITY 

In the previous chapter, a sufficient programming problem was 

constructed to solve a linearly constrained minimum norm prob

lem. Furthermore, duality was employed to provide an equivalent 

problem, to the sufficient program, with some rather significant 

computational advantages. Note that the theory of duality was 

utilized for the resulting (sufficient) geometric programming 

problem and not the minimum norm problem itself. The results of 

Chapter 4 not withstanding, this suggests the plausibility of apply

ing duality results directly to the minimum norm problem in pursuit 

of a more computationally attractive model. 

The intermediate results presented in this chapter do not con

tribute significantly to the computational aspects of the problem. 

However, in the spirit of Chapter 3j this development is intended 

to provide insight with regard to alternative dual problems asso

ciated with linearly constrained minimum norm problems. The 

motivation for the inclusion of this work is derived from the fact 

that a constrained minimum norm optimization problem is fundamental 

to such application areas as linear regression and generalized goal 

programming based on the metric. 

In considering dual problems we will note that several approaches 

to duality are prominent in the literature of mathematical program

ming. In particular, the derivation of the dual geometric program, 

presented in Appendix B, is based on a problem defined over a vector 
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space which is the orthogonal complement of the primal space. Hence, 

in this case, duality is based on the orthogonality of two distinct 

vector spaces. Perhaps the most common approach to the construc

tion and study of dual problems is based on the Lagrangian function 

(see Kuhn and Tucker [33]» Mangasarian [373 or Sposito tUll) which 

we shall address as Lagrangian duality, (it is interesting to 

note that the Lagrangian approach and the orthogonality approach to 

duality in geometric programming result in identical dual problems 

as evidenced by Theorem B.2 of Appendix B.) We now present some 

relevant results on duality for the linearly constrained minimum 

norm problem. 

3.1 Orthogonal Duality 

The results of the previous chapters axe based on the norm 

induced by the metric where p - 1. Recall that a norm is 

any real-valued function which satisfies the properties of a norm. 

In pursuit of generality, it will be assumed that the norm 11.11 

denotes any functional satisfying axioms 1 throu^ 4 of Defini

tion 3.1. Thus we include, as a special case, the 2-^ norm; but 

we are certainly not restricting ourselves to this function. With 

regard to the orthogonality of vector spaces, we first introduce 

the definition of alignment. 

DEFIIJITIOH 5.1 A vector xeX is said to be aligned with a vector 

yGY if 
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<^Xj^ = I |x| 1.1 lyl I. 

Observe that alignment is a relationship between two vectors in two 

distinct vector spaces. In this case, the vector spaces are the 

norma], space X and its normal dual space Y. 

Consider, now, the linearly constrained minimum norm problem 

given as: 

problem a 

minimize ||x|| 

subject to 

xeS = {x|xeR^, Ax = b) 

Following the development presented in Luenberger [36], let x be 

any vector satisfying the constraints of Problem A. Then we have that 

d = minimum | |x| | 
xeS 

= miniirgm | [x - y| |. 
ye Y 

Here Y denotes the space generated by the rows of the matrix A 

and, accordingly, Y denotes the orthogonal complement of Y (i.e., 

Y = iy|^y,z) = 0, zeY})« It then follows (by an application of Theorem 

2, page 121 in [35]) that 
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d = minimun ||x* - y|| = supremum ^x,x*\ 

Any vector in Y is of the form 

m 
X = ^ w.a. 

i=l ^ 1 

•where represents the ith row of the matrix A and 

We represent this situation notationally as A'w. Thus, since Y 

is of finite dimension, 

d = minimum ||x|| » maximum, /x,x\ 
xeS llA'wlUl^ ^ 

= maximum ^A'w,x*'S 
I IA'WI Ui 

= maximum b'w 
I IA'WI 1-1 

* 
where the last equality follows from the fact that x satisfies 

/ * . 
the constraints of Problem A (i.e., Ax = h). The results of 

this analysis are summarized in the following corollary to the de

velopment , 

COROLLARY 5.2 (Luenberger [36]) Let the linear system 

S = (xlxER^, Ax = b). 
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•where A is mxn and b is mxl, be nonempty. Then 

minimum I 1x1 | = maximum b'w. 
xeS I |A'W| 1-1 

Moreover, the optimal x° is aligned with the optimal A'w° so that 

x̂°,A'w°̂  = I Ix° I I • I !A'W° I I. 

Although Corollary $.2 states an interesting theoretical resiilt, 

the corresponding dual problem does not, apparently, afford any sig

nificant conçiutational advantage relative to the original primal 

program, Problem A. However, the development of this dual prob

lem, in particular the property of alignment of the optimal vectors 

in their corresponding dual spaces, suggests the following approach 

to duality via the Lagrangian function, 

5.2 Iiagrangian Duality 

Analysis of dual problems derived from the Lagrangian function 

has proved beneficial in optimization theory. Moreover, it is 

sometimes the case that a dual problem constructed from the lagran

gian function has significant computational advantages as with linear 

and quadratic programming (see Mangasarian [371 or Sposito [4l] ). 

Although research to date has not yielded significant results for 

dual problems associated with the general minimum norm problem, 

it is instructive to study the relationship between the primal problem. 
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Problem A, and a corresponding dual problem given as: 

PROBLEM B 

maximize b'v 

subject to 

I IA'w! I - 1. 

Consider the Lagrangian function associated with Problem A expressed 

as 

= lIxM +w'(b - Ax) (5.1) 

which is defined over x^g and Likewise, for the dual prob

lem, Problem B, we have 

i|j(w,x) = b'w + g(x) (1 - I |A'w| 1) (5.2) 

Observe that (5.2) includes a function g(x) which may be viewed 

as a Lagrangian multiplier in the same sense that the vector w' re

lates to expression (5.I) (i.e., w is a vector of Lagrangian 

multipliers or dual variables). It is interesting to note that the 

function g(x) must provide a mapping g:R^R in view of the fact 

that Problem B has only one constraint. Research on the relationship 

between Problem B and expression (5.2) indicates that if we define 

the function g(x) to be 
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g(x) = I|x|I 

then we can verify the relationship between (5.1) and (5.2). In 

support of Corollary 5.2, we assert the following result. 

PROPOSITION 5.3 If is an optimal solution to (primal) 

Problem A and w° is an optimal solution to (dual) Problem B, then 

Kx°,w°) = 4<w°,x°). 

Proof. Upon rearranging terms in (5.1), we have that 

<f'(x°,w°) = l!x°|( + w°'(b - Ax°) 

= I |x°| 1+ w°'b - w°'Ax° 

= b'w° + I [x'^l I - x°'A*w°. . (5.3) 

Likewise, substituting g(x) = | | x[ | into (5.2) we have 

I(^(w°,x°) = b'w° + llx°||(l - IIA'W°I!) 

= b'w° + !|x°||-i,Ix°!l-|lA 'w°IL (5.4) 

But, by the alignment property of optimal x° and optimal A'w° 

(Definition 5.1 and Corollary 5.2), it follows that 

I Ix°l I * I !A'W°I I = ^x°,A'w°^ = x°'A'w° 

which implies, in view of (5.3) and (5.4), that 'î'(x°,w°) = '^(w°,x°), 
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The fact that Proposition $.2 holds is not, in itself, a sig

nificant result. Actually, if it were not true that <j)(x°,w°) = 

ij;(w°,x°) then one would have just cause for questioning the validity 

of the dual program. Problem B. The interesting result is that the 

Lagrangian multiplier utilized in the function ^ (w,x) takes the 

form of norm I |xl I . In mathematical programming, the dual variables 

(Lagrangian multipliers) are often interpreted as "shadow costs" 

(see [37];[4l]). Farther analysis of the multiplier Ilx| I in the 

context of a shadow cost and interpretation of the physical signi

ficance of this functional would indeed be an interesting area for 

future investigation. Moreover, in the context of a generalized 

goal programming problem (based on the metric), analysis of 

the dual problem. Problem B, in view of expression (5.2) might 

identify those aspects of duality, indifference, and sensitivity 

analysis not covered in the duality results by Kombluth [31J . 
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 

The contribution of this thesis may be characterized as pro

viding a computationally attractive approach to the linearly con

strained Ttii ni Tmim norm problem. Inasmuch as the minimum norm 

problem is fundamental to such problem areas as linear multiple ob

jective programming and linear regression (with or without constraints), 

it follows that the results of this study provide a marginal contri

bution to these areas as well. 

Although we have used the adjective "attractive" to describe 

the procedure presented herein, a valid criticism can be made 

regarding the size of the resulting dual problem—albeit a linear 

model. In particular, we will now consider the dual problem and 

suggest a procedure to expedite the solution. 

6.1 Reduction of the Working Basis 

With regard to the computational aspects of the problem, let 

us revisit the dual problem, Eroblem Q, in Chapter 4. Observe, in 

particular, the (linear) constraints on the model. It is clear that 

the size of this linear program can become quite large as the number 

of decision variables, constraints, and goal functions increase. 

Although this approach affords the advantage of linear optimization, 

it is evident that a multiple criterion program of moderate size re-

q^res the solution of a dual problem (i.e., Problem Q) which is 

bordering on a "large-scale programming" problem. Analysis of the 

model suggests that we consider equivalent fonmolations of this 
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problem to expedite the solution procedure. In particular, the linear 

system 

-Cn,k n,m ®n,k ^n,k *^n,k 

Ik -Ik ®k,m Ik -Ik \,k 

*^k,k ^k,k °k,m -Ik -Ik 

'̂ 1' V Sktm - ° 

6 = 

^0 

n 

fP\ 

can be expressed eguivalently as 

A? 
n,k 

0 , 0 , 0 , 
m n,k n,k n,k 

k k,m k 

^k,k ^k,m ^k 

-I, n,k 

k 

y = 

\0/ 

n 

(6.1) 

.P/k 

jllr^Yw > 
where y^R , y^ unrestricted for i=l,... ,k, and y^ - 0 

for i=k+l,,. ..ji+k+m. Hence, an elimination of some of the column 

vectors in the model is possible. However, the essence of the computa-
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tion lies in the number of constraints since this detenoines the 

size of the bases which mast be manipulated at each iteration of 

the simplex algorithm. A reduction in the size of the -working basis 

is possible in this problem. To demonstrate this reduction, let us 

express the last k 'constraints on the model as 

t Ik Ik :k 

fP\ 

IPj 

(6.2) 

yeR^, y = 0. Note that the system may be expressed as 

[Ik 

y*eR^, y* = 0 

\PI 

(6.3) 

since the last k coirponents of the vector y are, effectively, 

"slack" variables. Moreover, rearranging the order of the variables 

in (6,3) suggests that we consider the equivalent system; 

1 1 

1 1 

* 1 1 

H < 
y -

Observe that this set of constraints is amenable to the methods of 

Generalized Upper Bounding. In particular, this formulation permits 
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the last k constraints in the linear system (6,1) to be removed 

from the working "basis when this upper bounding algorithm is 

employed. 

In summary, the constraint set for the dual problem, Problem Q, 

contains 5k+m variables and 2k+n constraints with a working 

basis of rank 2k+n. The results of this analysis indicate that 

this dual problem can be expressed equivalently as a linear system 

involving 4k+m variables, k+n "natural" constraints, and a 

system of k "generalized u^per bounding" constraints. Thus, the 

effective working basis has rank k+n. This reduction could be very 

significant in the solution of large scale problems—particularly 

when there are many goal functions in the model. Clearly, further 

study of this dual problem^ Problem Q, might yield further reduc

tions to ea^)edite the solution of large models. 

6.2 Concluding Remarks 

Perhaps the most significant contribution of this research is 

the potential application of these results to multiple criterion 

optimization where the decision-maker is interested in studying 

alternative measures of achievement based on the £ metric. 
P 

Currently, such analysis requires the availability of nonlinear pro

gramming software. Although these results demonstrate that linear 

optimization techniques are sufficient, it is clear that the size 

of the resulting linear model may become a deterrent for large-scale 

problems. In summary, it appears that more and larger problems were 

uncovered than solved. 
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APPENDIX A: GENERALIZED HTVERSE OF A MATRIX 
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Let C be any arbitrary matrix. Then the generalized inverse 

' of Cj denoted as C , may be defined as that unique matrix -which 

satisfies the following four equations: 

1. CC*C = C 

2. C*CC* = C* 

3. CC* = (CC*)' 

k, C*C = (C*C)' 

It can be shown that for any matrix C (nonsingular, singular, square, 

rectangular, zero or nonzero) there exists a unique matrix C which 

satisfies the above set of equations. 

When a matrix C has an ordinary inverse C"^ (i.e., -vdien 

C is nonsingular), C is equivalent to C" since C" satisfies 

the first equation, and the uniqueness property of C guarantees 

that C* = C~^. As shown in Ijiri [26], the generalized inverse C 

of a matrix C has the following properties; 

1. C = 0 (mxn) implies that C* = 0 (nxm). 

2. C** = C. 

3. (C)* = (C*)'. 

1 * -1 
4. If C is nonsingular, then C = C . 

5. (CC)* = C*(C*)'. 

6. If U and V are unitary, then (UCV)' = 

V'C*U'. 

7. If C = where = 0 and = 0 

whenever i ^ j, then C* = ^C^*. 
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8. If C is normal, then C*C = CC and 

(f)* = (C*)°. 

9, C,C*C,C', and C*C all have rank equal to 

* 
trace C C. 

10. C*C, CC*, (I - C*C), and (I - CC*) are all 

hermitian and idempotent. 

, * * 
11. (aC) = a c where a is a complex number and 

a means a if a ̂  0 and 0 if a = 0. 

* 
12. If C is hermitian and iden^otent, then C = C. 

13. If C has full column rank, then C = (C'C)" C, 

14. If C has full row rank, then C = C'(CC') 

15. If B(mxr), C(rxr), and D(rxn) each has 

< < , . 
rank r, where 1 - r - minimum (m,n), then 

.* * * * 
(BCD) = D C B . 
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APPENDIX B: DUALITY IN GEOMETRIC PROGRAMMING 
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In this appendix we will consider the fundamental properties 

of primal and dual geometric programming problems. In particular, 

the duality relationship itself will be explored as the dual 

problem is constructed. Virtually all of the material presented 

herein may be found in Duffin, Peterson, and Zener [l6]; hence, ex

plicit references on the key theorems will be omitted. 

The most general form of a primal geometric programming 

problem is given as: 

PROBLEM GP 

subject to 

minimize g^fx) 

Here 

gj^(x) - 1 k - l,2,...,p 

X. ̂  0 J — 1,2,...,n 
J 

\ n aj. . 
g, (x) = E c. . TT X. k = 0,l,c..,p (B.l) 

i=l j=l ^ 

where c^^^ > 0 and a^^^ denote arbitrary real numbers. 

To obtain notational simplicity we will express (B.l) as 

n a. . 
g, (x) = Z c n X k = 0,1,...,p 

ici [k] ij=l ^ 

where i [k] denotes the appropriate set of indices for the 
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function g^(x) such that I[p] = {l,2,...,m^}, I[ll = 

etc. 

The functions g^(x) are known as posynomials since each term 

is guaranteed to be positive over its domain of definition. As a 

consequence of these positive terms, geometric programming is a 

branch of convex programming. However, the highly nonlinear na

ture of this programming problem suggests that a solution proce

dure should be based on an equivalent problem which is more 

computationally attractive. Such is the nature of the dual geo

metric programming problem. Before presenting the dual problem, 

we will introduce several key results which will be useful in 

the analysis of the duality relationship. 

Duality in geometric programming is based on an application 

of the well-known arithmetic mean-geometric mean inequality. In its 

full generality, this inequality m%r be stated as follows : If 

are n nonnegative numbers and if * *'"^n 

property that 

n 
Z 6. = 1 • 
i=l ̂  

and 

6^ > 0 for i = 1,...,n, 

then 
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i=l ^ ̂  

n > 
E 6 u. _ (B.2) 

In the special case where 6^ = l/n, the left-hand side of (B.2) 

and the ri^t-hand side of (B.2) are, by definition, the arithme-

which is the familiar arithmetic mean—geometric mean inequality. 

An extension of this classic inequality is now presented for fu

ture reference in the following lemma. 

LEMMA B.l Let > 0, 6^ - 0 for 1=1,...,n be arbitrary real 

numbers. Then 

tic mean and the geometric mean, respectively. Hence, in this case, 

(B.2) may be expressed as 

where 

n 
X = E 6. 
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i 
= 1 

if 6^ = 0. Moreover, the inequality becomes an inequality if, and 

only if, 

The role of this inequality is central to the theory of duality 

in that it provides a "basis for the proof of the Main Lemma of 

Geometric Programming and, hence, the weak and strong duality 

theorems. 

In developing the most general form of the dual geometric 

program we first consider the construction of a dual objective 

function tailored to the unconstrained minimization of a posy-

nomial 

n n 
6 .  Z  V .  =  y .  I  6 . J  
Ji=l ^ Ji=l 1 

j—1;•••^n* 

m 
g(x) = Z p, 

j=l 

An application of Lemma B.l states that 

6 
U 

m (B.3) 
m 
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vdiere are arbitrary nonnegative numbers and 6^,...6 

are positive weights which satisfy the normality condition 

m 

m 
E ÔJ = 1 

i=l ̂  

Letting implies that 

m ^ m 
Z M. - IT 

i=l ̂  i=l 1*1, 
(B.4) 

n a 
Substitutijig the terms y. = c. ir x. into the right side of 

1 1 J 

{B.h) we have the pre-dual function 

m 
V(6,X) = TT 

i=l 

u : /«\ ̂  
1.1=1.1 

Ô. 

m fc^t i 

° li 

n Û. 
IT X.* 
j=l ^ 

where S denotes the linear combinations 
J 

for j—1)•••^n. 

Suppose now, that it is possible to select the wei^ts, such 

that 8. = 0 for all j. Then the pre-dual function is independent 
J 
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of the primal variables x . That is, we restrict the dual variables 
J 

to be contained in a dual space which is the orthogonal comple

ment of the primal space Op. The result, then, is the dual func

tion 

m 
v(6) = ÏÏ 

i=l ^i 

Note also, in view of (B.4) that 

g(x) - M - v(6 ) 

for any x e ^2^, 6 £ 0.^. 

Incoi^orating a prototype posynomial constraint into the program 

introduces a set of unnoimalized weights. Let denote 

these.unnormalized wei^ts and by X(A) the sum: 

n 
^ (A ) = Z A-., 

i=l ^ 

The relationship between the normalized weights 6 and the unnormal-

ized weights ^ is then A ^ = )( which implies that 

A_ 
^ \ for i = l,,.,,m (B.5) 

1 XTA ) 
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For unnor>n*\Ti zed weights, we have as a consequence of Lemma B.l that 

VA m ^ m 
Z  P .  -  w  
i=l ^ 1=1 M 

A(A). 

In view of the above we can state a prototype constrained 

geometric program as follows 

MEN 
Ao (*) > * 

-  IT. 

i=l 

Pi» 
(B.6) 

subject to 

i=n+l 

"i x(A) 
x(a) 

(B.7) 

How, multiplying inequality (B.6) by (B.7) we have that 

A.i 

° i=2J 

M 
tr 

i=ffl.+l 

( V  
i 

"T 
i 

This inequality is valid for any selection of A. It is more mean

ingful, however, to select the normalization A (A) = 1. Letting 

denote the wei^ts nonnalized ih this manner we have that 

X(5)A(*) = V(6,x) 
m 

g (x) - ÏÏ 
i=l 

^il 

_ 
m 

. . Oi 
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Likewise, this procedure can be extended to a program with N terms 

and p prototype constraints. In this case, 

6 .  

n S. K 
v(6) IT X/ = ir 

j=l ^ i=l ft) p A (6) n S. 
TT X.(6) ̂  ÏÏ x/ . 
k?l ^ j=l ^ 

Again, restricting <5^ to the dual space forces S^. to vanish 

for all j and gives the desired result. In the constrained case, 

as well as the unconstrained case, we also have that 

g^(x) - M - v(6) 

for any 

X e îîpj <5 G Og# 

Thus, the dual of Problem GP is given as 

PROBLEM GD 

Maximize v(6) = 
P 
TT TT 
i=0 ieiCk] 

1 
h ,  

TT Xv(5) 
k=l ^ 

A, (6) 

subject to 

X (ô) - Z 6. - 1 
ieI[o] 

(normality) 
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(orthogonality) 

S 
> 

i = (positivity) 
i 

0 

Consider, now, the relationship between the primal program, 

Problem GP, and the dual program. Problem GD, This duality rela

tionship is characterized by the Main Lemma of Geometric Program

ming which is given as 

LEMMA B.2 If x satisfies the constraints of the primal problem 

and <5 satisfies the constraints of the dual problem, then 

g^Cx) - v(6) 

Moreover, under the same conditions. 

SQCX) = v(5) 

if, and only if. 

iel [k], fc=l,...,p 

iel [Q] 

V 
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With regard to the equivalence of the primal and dual problems, 

necessity and sufficiency are provided by the first and second 

duality theorems of geometric programming which are given as: 

THEOREM B.3 Suppose Problem GP is superconsistent (i.e., satisfies 

Slater's condition) and that the primal function g^(x) attains 

its minimum value at a point which satisfies the primal constraints. 

Then 

1. The corresponding dual program. Problem GD, is consistent 

and the dual function v(G) attains its constrained 

ma,virmm at a point which satisfies the dual constraints. 

2. The constrained maximum value of the dual function is 

equal to the constrained minimum value of the primal 

function 

3. If X is a minimizing point for Problem GP, then there 

are nonnegative Lagrangian multiplious y,, k=l,,..,p, 

such that the Lagrangian function 

P 
L(x,y) = g (x) + : 

° fc=l 

has the property 

L(x ,y) ̂  g^(x ) = L(x ,y ) ̂  L(x,y ) 
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for arbitrary x. > 0 and arbitrary - 0. Moreover, there 
V 

is a maximizing vector 5 such that 

I 0,1. 
.1=1,  ̂ , 
So(x) 

i^I [Q] 

n a^. 

4 ^ '  
iel [k], fc=l,.,.,p 

* * 
Tfhere x = x and y = y . Furthermore, 

Xj.( S) = 
SoW) ' 

k^l,2,###,p 

1+. If 6 is a maximizing point for dual Problem GD, each 

* 
minimizing point x for primal Problem GP satisfies the 

system 

n a. . 
c IT x { 
ij=l ^ 

* / v(6 ). iel [0] 

V. 

iel [k] 

where k ranges over all positive integers for which 

* 
X^(6 ) > 0. 

THEOREM B.4 If primal Problem GP is consistent and there is a 

point 5 with positive components which satisfies the constraints 
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of dual Problem GD, the primai function g^(%) attains its con-

* 
strained minimum value at a point x "whicli satisfies the con

straints of primal Problem GP. 
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APPENDIX C: THE RELATIONSHIP BETWEEN LINEAR AND 
GEOMETRIC PROGRAMMING 
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On studying the properties of posynomial functions on geometric 

programming, Alex Federowicz in [l6] observed a peculiar relationship 

between linear programming and geometric programming. Namely, by 

a simple transformation of variables, the equivalence between linear 

programming and geometric programming with single-teim functions is 

easily established. His analysis follows. 

PROBLEM LI 

Minimize G^(z) = + ... + a^^z^ + 

subject to 

Gi(z) = a.3_z^ + a^gZg + ... + a^^z^ + - 0, 

X — 1,... ,m 

"vrtiere a. . and C. denote arbitrary constants. Using the following 
10 1 

one-to-one transformations: 

G^(z) = An g^, = An c^, z^ = in Xy 

where each c. and x. is positive, we can express Problem LI as 

an equivalent geometric program. 
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problem ml 

Minimize 

subject to 

J — Ij•••^n 

and 

g^(x) • IT - 1 i = 1 

Mote that this program is a special type of geomeixic program for 

which there is only one term in each posynomial; such a single-term 

posynomial is called a monomial. Accordingly, the dual problem is 

expressed as: 

PROBLEM M2 

Maximize (C.l) 

subject to 

1—1) • • • jDly 
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and 

1  °  j—1 • • J®-» 

Here a. . and c. are the e:q)onents and coefficients, respectively, 
10 1 

as given in Problem ML. Federowicz also observed that this dual pro

gram can be further simplified by exploiting the monomial form of 

its primal. Restating the product function (C.l) we have that 

6" 

v(ô) = I N  
m X.(6) 

(6) 
i=l 

•where the dual dependent variable A_(&) is defined as 

X.(6) = Z 6 . 
iej[l] 

Note that, for a program with monomial constraints, 

X-(5) = 6^. 

Thus, 

6 .  
m / c/ 
TT 

\ 6. i=o V 1 

m 



www.manaraa.com

127 

m 
= c i = c 

6 . 0 . T 6 . 
1=1 1 , 

m 
C T 
O 1=1 

ô 

(y (ô 

= c 
m 
TT 
1=1 

Now, using the one-to-one transformation 

V(6 ) = In [v( 6̂ ] 

we can express Problem M2 equivalently as : 

PROBLEM M3 

m 
Maximize V(6) = C + 2 C.6. 

° i=l 1 1 

vâiere =Xn(c^) for 

subject to 6L - 0, 
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+ «u'i + ••• + v'ffi = û 

%2 * °12®2 + ••• * V®m ° ° 

• • • * 
• • • • 
# # • • 

%D Vl * — + Vm = ° 

Observe that the resulting linear program is sirçly the dual of 

Problem LI which is as it should be. 
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