IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Retrospective Theses and Dissertations . .
Dissertations

1976

Computational aspects of linear multiple objective
optimization

John Mark Trzeciak
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
b Part of the Operational Research Commons

Recommended Citation

Trzeciak, John Mark, "Computational aspects of linear multiple objective optimization " (1976). Retrospective Theses and Dissertations.
6250.
https://lib.dr.iastate.edu/rtd /6250

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com



http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F6250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F6250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F6250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F6250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F6250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F6250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=lib.dr.iastate.edu%2Frtd%2F6250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/6250?utm_source=lib.dr.iastate.edu%2Frtd%2F6250&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While
the most advanced technological means to photograph and reproduce this document
have been used, the quality is heavily dependent upon the quality of the original
submitted.

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1.

The sign or “‘target’”’ for pages apparently lacking from the document
photographed is “Missing Page(s)”. if it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting thru an image and duplicating adjacent
pages to insure you. complete continuity. )

. When an image on the film is obliterated with a large round black mark, it

is an indication that the photographer suspected that the copy may have
moved during exposure and thus cause a blurred image. You will find a
good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material beirig

photographed the photographer followed a definite method in

“’sectioning” the material. It is customary to begin photoing at the upper

left hand corner of a large sheet and to continue photoing from left to
right in equal sections with a small overlap. If necessary, sectioning is
continued again — beginning below the first row and continuing on until
complete.

. The majority of users indicate that the textual content is of greatest value,

however, a somewhat higher quality reproduction could be made from
“photographs” if essential to the understanding of the dissertation. Silver
prints of “photographs’”’ may be ordered at additional charge by writing
the Order Department, giving the catalog number, title, author and
specific pages you wish reproduced.

.PLEASE NOTE: Some pages may have indistinct print. Filmed as

received.

Xerox University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106



77-15
TRZECIAK, John Mark, 1949-
COMPUTATIONAL ASPECTS OF LINEAR MULTIPLE
OBJECTIVE OPTIMIZATION.

Iowa State University, Ph.D., 1976
Operations Research

Xerox University Microfilms, annarbor, Michigan 48108



Computational aspects of linear

mltiple objective optimizatioh
by

John Mark Trzecisgk

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of
The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Industrial Engineering
Major: Engineering Valuation

Approved.:

Signature was redacted for privacy.

™ Charge of Msjor Work

Signature was redacted for privacy.

Bor the Major Department

Signature was redacted for privacy.
For’ the Graduate College

Iowa State University
Ames, Iowa

1976



ii

TABLE OF CONTENTS

INTRODUCTION

LINEAR MULTIPLE OBJECTIVE OPTIMIZATION

A MINIMUM NORM APPROACH TO VECTOR MAXIMIZATION
MINIMUM zp NORM PROBLEM AND CONVEX PROGRAMMING
ASPECTS OF DUALITY

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH
BIBLIOGRAPHY |

ACKNOWLEDGEMENTS

APPENDIX A: GENERALIZED INVERSE OF A MATRIX
APPENDIX B: DUALITY IN GEOMETRIC PROGRAMMING

APPENDIX C: THE RELATIONSHIP BETWEEN LINEAR AND
GEOMETRIC PROGRAMMING

Page

37
25
90
98
102
106
107

110

123



1. INTRODUCTION

Consider the inherent deficiencies of "traditional" (i.e.,
single objective function) mathematicsl programming formulations of
real-world models in view of the fact that a decision-meker func-
tions in a multi-criterion environment. Virtually all decision-
meking situations involve simultaneous considerastion of multiple
and oftentimes conflicting "goals" or objéctives.

Assuming that it is possible to construct mathematical ex-
pressions for a decision-maker's goals, the resulting formulation
describes a multiple criteria programming problem, Clearly, multiple
objective optimization models provide a superior representation of
real-world decision-making situations relétive to single objective
models. Although the concept of multiple criterion optimization
is intuitively appealing, the "solution" of miltiple objective
programming problems raises some serious questions with regard to
theoretical and computational aspects of the problem. In particu-
lar, the criterion with which to judge optimality is itself subject
to debate and controversy. Hence, any solution procedure used to
identify optimal solutions must reflect this important theoretical
consideration.

The primary emphasis of this study is focused on the camputa-
tional aspects of multiple objective optimization problems involving

linear functionals. An overview of this study is now presented.



1.1 Overview

Chapter 2 presents both a formal and an intuitive introduction
to the general area of linear multiple objective optimization from
a utility theoretic perspective. As a consequence of related work
in decision theory, & linear multiple objective programming problem
is recast as a (linear) vector maximum problem where the objective
is the identification of solutions which are "admissable", "undomi-
nated", or "efficient". In particular, the computational aspects
are considered in view of recent results in the literature. Also
presented, in the spirit of background information, is the philo-
sophically different approach to linear multiple objective optimi-
zation known as goal prcgrémming. Construqtion, analysis, and
discussioh of this problem focus on the computational aspects of
the model and the fundamental issue of a "measure" of goal achieve-
ment is also addressed. Moreover, the equivalence of goal pro-
gramming and linear regression (with or without side conditions) is
established to provide motivation'for studying alternative measures
of goal achievement in view of the recent trend to conéider alter-
native criterion of fit in linear regression.

The mathematical preliminaries and the intermediate results
presented in Chapter 3 establish foundations for a new approach to
the solution of the linear vector maximum problem based on the Ly
metric. Although the solution procedure is developed in detail,

the computational advantages of the approach are questionable. Other



theoretical aspects of the approach are considered and discussed in
detail. |

The development and analysis presented in Chapter 3 provide a
framework for the more general results contained in Chapter 4. 1In
particular, a solution procedure is developed for the linear multi-
ple objective problem based on the lp metric when pe[l,®). The
analysis focuses initially on the linear vector maximum problem and
is then extended to accommodate the more general goal programing
problem., As & consegquence of.the zp nmetric, the solution pro-
cedure utilizes a branch of convex programming known as geometric
programming, Motivation for the geometric programming formila~-
tion is derived from the computational advantages inherent in its
associated dual problem. Moreover, it will be shown that the
resulting dual problem can be solved by linear programming tech-
niques.

‘Recognizing the importance of duality in mathematical pro-
gramming problems, Chapter 5 provides a brief overview of an in-
teresting dual problem associated with the a linearly constrained
minimum norm problem., Based on results established by another
author, a dual problem is considered which does not contribute to
the computational aspects of the problem. However, analysis of this
dual problem utilizing the Lagrangian function does provide a re-
sult which may be useful in interpreting the physical significance

of the dual problem.



The last major chapter of the thesis, Chapter 6, summarizes
the key results of the paper. In particular, the computational as-
pects of the dual problem presented in Chapter 4 are explored fur-

ther as criticisms of this approach are considered.

1.2 Notation

To obtain notational consistency with related literature, the
following conventions will hold'thrcughout this thesis:

1. The symbol " <=> " reads as "if and only if" or "is equiva-
lent to,"

>

> L3
2. Let x,yERn. Then x=y< x =yj, J=l,4.e40.

J

> >
3. Let x,y¢R°. Then X -y <D x =y, x # ¥.

4, Iet x,yERn. Then x > y & xJ > yj J=1lyeesyne
H

5. fn(a) = loge(a.‘) ffor a > 0).



2. LINEAR MULTIPLE OBJECTIVE OPTIMIZATION

The roots of multiple objective optimization are found in the
litergture of classical physics, astronomy, and also in the related
lite;ature on the theory of games, decisions, and utility. In the
context of a mathematical programming problem, multiple objective
optimization is, in a broad sense, concerned with the constrained
maximization of some measure of achievement or utility. To estab-
lish the relationship between the theory of utility and multiple
objective optimization consider the following construction of a
lirear multiple objective programming problem,

Let
g (x), 8,(%)5 ..., g (x)
denote a set of linear real-valued objective functions. Here
gi(x) = ;X i=1,...,k

where cieRn represent vectors of known constants and xR is a

vector'of unknown decision varisbles. Also, define
S = {xlngn, Ax S b, x Z 0}.

Thus, S describes a set of linear side conditions, or constraints,



on the model. Consider, also, the function

g, () ]
g(x) = | g,(x) | = Cx

g, (x)

so that C is a kxn mnatrix of known constants. Note that the

vector-velued function g provides a mepping g:Rn->Rk from the

"decision space” to an "outcome space” as defined by the linear
operatbr C. Utilizing this notation we now state the most general
form of our linear multiple ob;jective programing problem.

PROBLEM U

Maximize U(Z)

subject to

xeS.

Here the real-valued function U, U:Rk-»R, assigns a measure of

utility for the decision-maker, given the ocutcome vector Z defined



by a particular decision vector xeS.

A complete treatment of the theory of utility is beyond the
scope of this thesis; a more complete discussion of this subject may
be found in Von Neumann and Mortgenstern (43!, Hadley [251; or Chernoff
and Moses [12]. However, it is instructive and relevant to briefly
outline what is involved with the existence and construction of
such g utility function. With regard to the existence of a utility
function, consider the following four axioms as presented in

Chernoff and Moses [12]:

1. With sufficient calculation an individual faced with
two prospects Pl and P2 will be able to decide
whether he likes each equeally well, or whether he pre~

fers P, to P..

2 1
2. If Pl is regarded at least as well as P2 and P2 at
least as well as P3, then Pl is regarded at least as

well as P..

3

3. If Pl is preferred to P2 which is preferred to P

then there is a mixture of Pl and P3 which is pre-

ferred to P2, and there is a mixture of Pl and P3

39

over which P

o is preferred.

4., Suppose the individual prefers P, to P, and P3 is

another prospect. Then we assume that the individual will

prefer a mixture of Pl and P3 to the same mixture of



P2 and P3.

Von Neumasnn and Mortgenstern [43] have shown that if a decision-
maker can satisfy these four axioms then the decision-meker has a

utility function U(U:Rk-»R) which sgtisfies the following:

PROPERTY 2.1 If

k
1. Zl’ ZQER and

>
20 Zl - Ze
then

U(Zl) > U(Zz).

In view of Problem U, Property 2.1 can be interpreted as a criterion
with which to measure optimality when one is concerned with the
similtaneous meximization of the k linear objective functions.
Note that the four axioms only address the existence of a utility
function--the behavior of which is described in Property 2.1. The
actual construction of a particular utility function is indeed a
difficult and complex task. (For a discussion of the complexities
associated with the construction of a utility function see
Brandis (5].)

Although it is gpparent that the f‘undaxﬁental nature of multiple
objective optimization is embodied in the theory of utility, it is

clear that a more pragmatic spproach to the development of a measure



of achievement is not dnly desirable but also a necessity. Moreover,
it is evident that the acceptance of multiple objective optimization
as a decision-msking tool depends critically on the development of
relatively straightforward solution techniques for use by the decision-
maker.

Following, in spirit, a utility function approach, we now
present two distinctly different spproaches to linear multiple ob-
jective optimization. In particular, we will review the classic
vector maximum problem and another problem of more recent vintage
known as gosl programming. In each case we will discuss the
relative merits of the approach and note that these procedures, in
fact, were developed to circumvent the complexities of multipls
criterion decision-meking. To provide motivetion for considering
alternative measures of achievement and to establish a foundation
for the material presented in Chapter 4, we will also outline the

classic statistical problem of constrasined regression,

2.1 The Vector Maximum Problem

The vector maximum problem first appeared in the litei'ature
of mathemstical progremming in the classic paper by Kuhn and
Tucker [33] on nonlinear programming. Recognizing the importance
of multiple objective optimization, Kuhn and Tucker developed a set
of necessary and sufficient optima,lity' criteria for the following

problem.
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PROBLEM VM (Kuhn and Tucker [33]1) To find an x° that movimizes

the vector function GX constrained by Fx 2 0, x 2 0--that is, to

o]

find an xo satisfying the constraints and such that Gx 2 gx~ for

no x satisfying the constraints.

With regard to our formulation of the linear multiple objective
programming problem, the vector function Gx corresponds to our
g(x) and the constraints Fx 2 0, x 20 correspond to our set S.
Thus, we focus attention on a linear version of Problem VM. It
is important to note that the construction of a specific utility
function, U, is avoided. Moreover, in view of Property 2.1, it
is assumed that such a utility function exists and that the measure
of utility is maximized when the outcome vector Z is "maximized".

The linear version of the vector maximum problem mey be expressed as:

PROBLEM _LVM

"Maximize" Cx

subject to

XeS, .
Note that the function Cx is veccor-valued and that the ob,jec’ciw)é‘
to "meximize” this function does not conform to a traditional cri-
terion of optimality. Thus, to solve Problem LVM we need to recast
the concept of optimality and establish a new criterion for identi-

fying those vectors which are, in some sense, optimal. These "optimal"



vectors are described in the following definition of efficiency.

DEFINITION A point x°¢S is said to be efficient if, and only if,

there does not exist another xeS such that Cx 2 Cxo.

An intuitive interpretation of an efficient point could be
given as that point xoeS which is undomingted by all other points
x€S to the extent that an increase in one of the components of
z° = Cxo, say Zci>, is made only at the expense of & decrease
in at least one other component of ZO, say Zg. Thus, efficient
solutions are analogous to "Pareto optimal solutions", "admissable
points', and "proper solutions" in the context of economics, decision
theory, and related areas as studied by Karlin [277, Von Neumann
and Mortgenstern [43], Geoffrion [233', Kuhn and Tucker (33] and
others. As will be showm in subsequent sections of this chapter,
however, the solution of P.oblem LVM under the criterion of effi-
ciency is, indeed, a significant computational task.

Before presenting some relevant results on a general solution
of Problem LVM, it is instructive to consider the most common solu-
tion procedure illustrating the fact that. it is designed to circum-
vent the true problem of multiple objective optimization. First,
observe that Cx is a vector-valued function and that no generalized
solution procedure is currently available to solve Problem LVM in

the sense that the simplex algorithm is readily availsble for lineaxr

programming. Now, consider a cardinal ranking of the goals
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8198pr0 e 28, &8 determined by a weighting vector vERk with components
vy > 0. This weighting of the objective functions suggests the follow-

ing computationally attractive variant of Problem LVM:

PROBLEM _LVMW

Maximize v'Cx
subject to

xeS.
Since veRk is a vector of known constants, it follows that
v"C:Rn+R. Thus, Problem LVMW is amenable to the methods of linear
programming since v'Cx describes a linear real-valued function.
‘ Philip [39] has shown that this approach will identify an efficient

solution to Problem LVM by establishing the following result.

IEMMA 2.2 A point x"eS is said to be efficient (for Problem LVM)

if, and only if, there exists a vector veR™ such that

k
2. L v, = 1
i=1
3. x° solves meximize {v'Cx|xeS}.

Implicit in this procedure, however, is the critical assumption that
the decision-maker has a prior knowledge of the relative merits of

each of the k objectives and that these relative "weights" are
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accurately defined by the vector v. Clearly, this is a very stroné
condition which must be satisfied. Realisticelly, this assumption
is often too strong to meet, but the decision-maker is sometimes
forced to proceed with this weighting spproach because of its
computational esdvantages. Further analysis of the weighting vector
approach, in view of Lemma 2.2, reveals that a decision-maker, in
theory, could identify all efficient points to the problem given
that one could generate all possible vectors VSRk which satisfy
the conditions of the lemma. It is immediately obvious that
generating the set of all possible weighting vectors is futile.
Although this procedure is particularly sttractive, in view of the
Lemmg 2.2, it affords little promise for the decision-maker who

is not prepared to establish absolute rankings but is merely in-
terested in identifying a set of "admissable" solutions.

Perhgps some of the most significant developments on the
general theory of linear multiple objective programming can be
attributed to Steuer [427 which later appeared in the literature
by Evans and Steuer [19,20). 1In pursuit of a general procedure
to identify all efficient solutions to Problem LVM, Steuer developed
an algorithmic approach based on the gpplication of seversl well-
known theorems of the alternative (see, for example, Mangasarian [371).
Motiégted by the premise that a decision-maker would like to select
his best "compromise" solution from among the set of all efficient
solutions, the procedure attempts a characterization of the set:

E = {x|x€s and x is efficient]}.



1k

Since there could very well be an infinite nunber of points in the
set E, the procedure was developed to identify all basic solutions
of S which are efficient since this resulting subset Eg (Eﬁ;E)
is guaranteed to have a rinite number of elements. Moreover, it is

proposed that E_ will provide & meaningful characterization of

B
the set E, The algorithm is based on the construction of a sub-
problem at selected basic solutions to test not only for efficiency
but also for an efficient direction in which to move to identify

an adjacent basic solution which is also efficient. A brief de-

scription of this procedure is now presented.

DEFINITION A direction #eR™ is a feasible direction at a point
* -
x ¢S if, and only if, there exists a scalar a > O such that

* - -
(x + op)eS for all ael0,al.

A logical extension of the concept of a feasible direction is given

as follows.
DEFINITION A vector ﬁeRp defines an efficient direction at a point
*
x €S if, and only if,
- *
1. ¢ is a feasible direction at x , and

* * -
2, There exists a scalar o > O such that (x + ou) is an

*
efficient solution for &ll ac[0,a ].
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The relationship among efficient and feasible directions and

efficient solutions is established in the following result.

IEMMA 2.3 (Evens and Steuer [20]) ILet x° be an efficient solu-

tion to Problem LVM and let ﬁeRn be a feasible direction at x°,
Then © is an efficient direction at x° if, and only if, there

does not exist a feasible direction usRn such that Cu 2 Cﬁ.

Given that one has identified an efficient solution to Problem
LM, a subproblem must be constructed to determine the efficient
direction j. Recall that a basic solution is an extreme point
of the convex polyhedron S = {xlxeRn, Ax -<- b, x 2 0}. Suppose
one has identified an efficient extreme point x°eS. Let A be
partitioned into B (the basic column vectors of A) and N (the
nonbasic columns of A). Likewise, let C be partitioned into

C. (the column vectors of C associated with the basic variables)

B
and CN (the column vectors of C assoriated with the nonmbasic

varisbles) and so on for

This notation permits the following definition of the reduced cost

matrix
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which is used to define an efficient direction as seen in the follow-

ing result.

LEMMA 2.4 (Evans and Steuer [20]) et x~ be an efficient solu-

tion to Problem LVM with associated basis matrix B, Then HeR"
is an efficient direction at x° if, and only if, there does not
exist a Peasible direction MHER", at x°, such that

S wi

WuN N .

Observe that feasible directions may be viewed as the edges of the
polyhedron S adjacent to the point x°. In determining the effi-
ciency of such a feasible directioﬁ the procedure becomes somewhat
complicated in the presence of degeneracy .(see {191) because in this
case the number of extreme points adjacent to a given extreme point
exceeds the number of nonbasic variables. To circumvent this prob-
lem a condition is enforced on ueRn, at a given extreme point xo,

which states that u must satisfy

(-5 W)p uy 2 0

v

uNO

where (-~‘B':LI\I)D denotes the rows of -B'N associated with the basic
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variables which are degenerate, Incorporating this condition into
Lemna 2.4 results in the following test for efficiency of a direc-

tion u.

LEMMA 2.5 (Evans and Steuer [20]) A vector ﬁan describes an

efficient direction if, and only if, the system

< -
Wiy = Wy

- ) .>_
(-B lN)D w20

nv

]JN 0

is inconsistent.

This st'rqnger version of Lemma 2.4 incozporates a set of condi-
tions relating to a pivoting strategy in the presence of degen-
eracy. To illustrate this point, consider the simplex tableau
in a state of complete degeneracy. If the jth column vector, Pj’
is chosen as the vector to enter the basis, then one may in fact
"pivot" on any element of Pj which is nonzero without loss o:f
feasibility. Such is the nature of the additional restrictions
in Lemma 2.5

Focusing attention for the moment on the efficiency of a par-

ticular point x° we have the following subproblem..
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LEMMA 2.6 (Evans and Steuer [20)) A solution x° is an effi-

cient solution if, and only if, the problem

meximize e'v
subjéct to
Wwr+v=0

(fhbr+s=o

fiv
(o}

T, V, S

is bounded where e' represents the sum vector of appropriate length.

Now, addressing the issue of efficiency of a direction, we have the

following subproblem test.

LEMMA 2.7 (Evans and Steyer [20)) Iet x° be an efficient

extreme point. Then the subproblem given in Lemma 2.5 is consis-

tent if, and only if, the subproblem

meximize e'v
subject to

Wr + (-WﬁN)w +v=20

(B-lN)D r+g=0

>
ry, w, v, s =0

has a feasible solution with e'v > O. That is, the objective

function is unbowmded.
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In this particular algorithm, each edge of the polyhedron S
adjacent to an efficient point x° is tested for efficiency. This
is accomplished using the Chernikova procedure [1l] to generate
the set of all edges emanating from x° where each edge can be
viewed as a direction which is tested for efficiency using Lemma
2.7. From a computational perspective, the procedure is programmed

into the following three phases:

1. Identify a basic feasible solution if one exists or

terminate.

2. From a basic feasible solution, proceed to identify an

efficient extreme point.

3. Fran an efficient extreme point, generate g list of all

efficient extreme points.

Clearly, phase3 is the most complex task. It is at this phase of

the computation that subproblem construction and solution are deter-
mined, Furthermore, as discussed in [19], this procedure requires
extensive bookkeeping if one is to ensure finiteness of the algo-
rithm, Phases 1 and 2 deserve special note since the procedure de-
veloped supports five options with which to identify the initial
efficient solution., Perhaps the most computationally attractive
approach would be to assign some arbitrary weighting of the objectives

and, in view of Lemms 2.2, solve & linear model. However, it is obvious
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that in using this method one runs the risk of overlooking a basic
efficient solution in pursuit of that particular basic efficient so-
lution which maximizes v'Cx. |

Although theoretically sound, a weakness in the philosophy of
the solution procedure is evident since the resulting characteri-
zation EB of E may be quite large albeit finite, This situation
is analogous to providing the decision-maker with too much informa-
tion. It does, however, address the problem of multiple objective
programming where the decision-meker is not in a position to estab-
lish an absolute ranking of the goals or objectives.

Other authors active in the area of efficient set methods in-
clude Markowitz [38], Geoffrion[23], and Karlin [27]). In particu-
lar, Geoffrion [23) proposed a procedure to identify all efficient
solutions to a bi-criterion program (two objective functions). How-
ever, the results of his work have not been extended to problems of
a more general nature,

A popular variant of the pure linear vector meximum problem has
come to be known as goal programing. Here, a decision-maker's
measure of utility is maximized when a measure of "goal achieve-
ment" is maximized. We now present some relevant results in this

wea'
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2.2 Goal Programming

A philosophically different approach to linear multiple objec-
tive programming was proposed by Charnes and Cooper [7].  Not only
does this approach afford significant computational advantages, but
it also provides a more realistic model of many real-world decision-
making situations. Consider, again, the most general form of

our linear multiple objective programming problenm.

PROELEM U

maximize U(Z)
subject to

Cx =12

x€8,

A fundamental assumption implicit in goal programming is that the

utility function, U(Z), is maximized when the outcome vector

ZeRk gets as close as possible to some target or “"goal" vector

g*eRk which is assumed to be known and constant. Thus, the

utility function is never explicitly constructed but is assumed to

exist and, by definition, it provides a measure of "goal attainment".
As introduced by Charnes and Cooper [7], discussed by Charnes

and Cooper [6,7l, and applied by Charnes, Cooper, Klingman and

- Niehaus (8] and Charnes, Cooper, Niehsus and Scholtz [9l, the
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measure of achievement is meximized when the distance between the
point g*eRk and the point g(xo)eRk, g(x) = Cx, is minimized.
Recognize immediately that distance can be defined any number of
ways. Chapters 3 and L exploit alternative measures of achievement
by considering a more general definition of distance. Of immediate
k

interest is the concept of distance between two vectors x, yeR

as defined by the metric

1 /

k 1/13
Qp: z Ixi - yi IPJ
i=1

when p = 1. Thus, in goal programming the meassure of achievement
is maximized when the metric

k

y *

T ‘gi(X) - g-l

i=1 a

is minimized where (g:.L (x),g:) denote a goal function and its
associated target value or goal. Under the assumption that this
21 metric accurately describes the decision-meker’'s utility, the
following linear programming model can be employed.

PROBLEM GPl1
k
minimize § (w-!-d’.f + w.d,)
T A S b

subjeet to
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Cx +4d - d.+ = g*
XeS

at, aer®, ', a2 o
La, d>=0

The inclusion of weights (w;, w;) in the model is intended to
provide the decision-meker the option of specifying the relative

importance of the various goals., Without loss of generality we can

assume that w; = w; =1 for all i and provide the following

interpretation of the goal programming model. Consider any of the
k linear goal function, say gi(x), and its corresponding goal g:.
In view of Figure 1, the nature of goal programming is to find that
particular x'eS that minimizes the sum of the deviations which

*
describe the distance between gi(x) and 8o

gt
A
gi(X)
*
&;
N
»”

70 O B

Figure 1. The Nature of Goal Programming
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The last constraint in Problem GPl ensures that a given goal
cannot have both positive (dI) and negative (dg) deviations
active simulteneously. Fortunately, this (nonlinear) condition
will always be satisfied when the simplex algorithm is used to
solve the model. (The definition of a basis excludes the possibility
of two active linearly independent vectors.)

Inherent in the construction of Problem GPl is the assumption
that the weights (w;, w;) define a cardinal ranking of the goals.
Moreover, it is also assumed that minimizing the resulting “"weighted"
24 metric is equivalent to meximizing the decision-maker's measure
of utility. For the sake of completeness it should be noted that
an ordinal ranking of the goals is sometimes useful (see, for
example, Lee [34] or Ijiri ([26)). In this situation the goals are
ranked according to some priority structure. That is, assume that
goal 8; is ranked ordinally above another goal gj. Then a
priority level Pi is assigned to the deviational variebles
corresponding to g; and a priority level Pj is assigned to
the deviational variasbles associated with gj such that Pi >> Pj’
In this case as well, a minor variant of the simplex algorithm can
be employed to solve the problem (see Lée [34).

The model outlined above describes the tool which is used to
solve virtually all goal programming problems encountered in
practice. Computer code implenting this procedure has been de-
veloped by Lee and Hoffman in (34 and is generally well accepted.

However, the practitioner interested in goal progremming should
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‘address the following fundesmental (and often overlooked) issue:

"Does minimizing a weighted £, metric accurately describe a

1
meaningful measure of achievement?" Clearly, this approach to goal
programming affords the luxury of a well-known and readily available
solution procedure. However, one wonders if the acceptance of this
technique is based on its merit as a model of a decision-maker's
utility or whether its popularity is derived from the inherent
linearity of the model. Resolution of this philsophical issue is
beyond the scope and not the intent of this thesis. However, to
provide further insight we will consider another goal programming
model based on a different measure of achievement. The motivation
behind introducing an elternative model is to illustrate the mathe-
matical complexities one encounters with alternative measures of
aechievement and to provide a foundation for the results of Chapter 3.
A goal programming model based on a measure of achievement

different from the £, metric was proposed by Ijiri [26]. To illus-

1
trate the nature of his epprcach consider, again, Problem U where

the utility function, U, is maximized when the metric

[ x - |1/p
'Q'P: z Ixi = yi 'P
i=1 |

is minimized for p = 2. Here the 22 metric defines the Euclidean

distance between the two vectors x, yeRk. More specifically, let
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g(x) = | g(xj| =Cx

represent a set of linear goal functions defined as a vector-valued

function g and let

b 3
Nk

WPk ees

represent a set of corresponding goals. Note that the 22 metric

.l2 (a

more complete discussion of norms is given in Chapter 3). Thus, a

induces & Euclidean norm which we will denote as |

general formulstion of a goal programming model based on the 2.2

metric is given as:
PROBLEM GP2
¥*
minimize ||g(x) - g'l],

subject to

XES.
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Observe that Problem GP2 is inherently nonlinear and, in particular,
is amenable to the methods of quadratic programming. In an effort
to avoid the complexities associated with nonlinear optimization,
Ijiri [26] proposes a generalized inverse approach to the solution
of this model. To illustrate the nature of this approach let us
assume, for the moment, that the program is unconstrained so that

our problem simplifies to

*
minimize ||Cx-g||2,
or equivalently ' 1/2
i (g, (x) - €1 2
minimize o g; (x) - gil

-

* .
Consider the Ilxmn matrix C and let C denote its generalized
inverse. It then follows, as a consequence of the theory of a

generalized inverse of an arbitrary matrix (see Ijiri [26]), that

the vector

is that unique vector for which

1. Cx is a vector which is the minimum Euclideen distance
*
to g from among all vectors in R(C) (R(C) denotes

row space of the matrix C), and

2, x is minimm Buclidean ciistance to the origin.
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Hence, x solves the problem

minimize | lxl |2
subject to

.
llex - ¢ ||, to be a minimm

where H'll2 denotes the Euclidean norm. In Chapter 3 a more
complete discussion of the properties of a generalized inverse is
presented. However, it is instructive at this point to note that
alternative solutions to Problem GP2 are obtainasble. In this

situation,_we may dispose:of the uniqueness property guaranteed by
minimize lixllz

and consider the solutioﬁ defined by the expression
xY= C*g* + (I.- C*b)Y, veR".

*
Here, xY- solves minimize ||Cx - g ||2 for any vector YeRn.

*
As will be shown in Chapter 3, (I -~ C C)Y is a vector from the mll

space of the matrix C -so that

* ¥ *
Cicg + (T ~-CcC)v

Cx
Y

L]

* * *
CCg +C(I=-CQ)y
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* ¥ *
cC'g + CY - CC CY

* %
cCg +CY - CY

* * -
CCg =Cx

It is also important to note that these results require further
extensions if one is to incorporate constraints as given in the state-
ment of Problem GP2. Moreover, the construction of the generalized
inverse of an arbitrary kixm matrix is itself a significant compu-
tational task. Although Ijiri's approach does allow for a measure
of achievement different than the 21 metric, it does not afford

the computational advantages of linear programming.

2.3 Goal Programming and Constrained Regression

As recently noted by Chernes and Cooper [6), the concept of
goal programming or goal achievement is not totally new. A strongly
equivalent problem studied by statisticians (see ‘1], (2], [L4u])is
that of constrained zp approximation using linear approximating
functions., To show that ,zp approximation is completely equivalent, in

spirit, to goal programming, consider the following statistical problem:
Let X denote a kx(nt+l) "observation" matrix of known constants

(k observations of n independent varisbles), let Y represent

a kxl vector of observations of some dependent variable, and let

B' = (Bys Bys «ess B)
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denote a vector of unknown parsmeters to be estimated. Optionally,

let

S = {B]BeRn+l, DB S ay

represent a set of linear side conditions on the vector g£. The
nature of regression may nbw be described as follows:
PROBLEM GRL Find & vector 6, if it exists, such that

1. e (if appropriate)

24 so maximizes some measure or criterion of fit for the model.
If one assumes that meximizing the measure or criterion of fit cor-
responds to minimizing the 2P norm

|lx8 - vi]
P

then we can state the #p approximation problem as:

PROBLEM GR2

minimize |IXB - il%

subject to
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1. DB =4 (optional)
2. ger?™l

The relationship between goal programming and %p approximation is
now evident if one considers the vector-valued function XB to be
a goal function and the observation vector Y +to be the target or
goal vector.

Perhaps the most frequently encountered regression problem is
kmown as "least squares" regression. In view of Problem GR2, a
least squares regression is defined as that lp approximation prob-
lem for which p = 2. Thus, in this context, least squares re-
gression is then "regression under 2_." which may be expressed as

2

minimize |[X8 - Y[|2
Bst+l
subject to

DB = q (optional)

Most least squares regression problems do not involve the optional
side conditions since this option adds significantly to the compu-
tational aspects of the problem as will be demonstrated shortly.
Without side conditions, least squares regression reduces to finding

a unique solution to the normal equations (see [15)) given as

X'X8 = X'Y
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which is provided by the computation
8% = (x0)™ X'y
It can be easily shown that Bo_ solves the problem

minimize ||B||2
subject to

| [x8 - Y||2 to be a minimum

which is completely equivalent to the goal programming model pro-
posal by Ijiri where the measure of ashievemenf is based on the ﬂé
metric, Just as in Ijiri's model, fhe salution procedure for con-
strained regression (i.e., including side conditions on B) results
in a nonlinear optimization problem which is amenable to the methods
of quadratic programming.

Iﬁ is becoﬁing increasingly evident that the popular least
squares (22) regression technique does not always yield & superior
estimate of the unknown parameter 8. In particuiar, the 22 estimate
of B 1is quite sensitive to outliers in the observed data. Moreover,
it can also be shown that when the error terms associated with the
observations do not follow the N(0,1) distribution then some of
the desirable properties of the 22 estimate afe not satisfied

(such as consistency, unbiasedness, maximum likelihood, etc.). Further-

more, if the error terms associated with the observations do not follow
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a multivariate normal distribution (with mean O and variance 1)

then the distribution of the resulting £, estimate may not follow

2

a multivariate normal in which case the analysis of variance, as we

know it today, is invalid. Recognizing the sensitivity 6f 22 esti-
mates to outliers in the data, research in [1) and [22) is focused

on the more generél problem of ZP regression. Although & key as-
pect of this research is the determination of the distributions of the
estimates under certain assumptions régarding the distribution of

the errors, the general 2p regression problem is inherently a
nonlinear optimization problem for virtually all values of p.

Leaving the problem of distributions of estimates to statisticians,
we will focus on the optimization problem used to identify a particu-

lar estimate of B under the criterion lp.

2.3.1 Regression Under &%, (LAVE):

1

The regression problem defined under the criterion lp when
p =1 is known as Least Absolute Value Estimation which may be ex-

pressed as follows:

minimize |[XB - Y| lp:l
ger™HL
subject to

DR=4d (optional)

Note that this formulation is completely equivalent to goal programming
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based on the & metric. Hence, LAVE is smensble to the methods

of linear programming.

2.3.2 Regression Under #_ (MINIMAX):

Sometimes one is interested in the estimate of B where the
criterion of fit is given as the Rp metric when p = ® It can

be shown that this is equivalent to
minimize {sg.pl(XSEi- Yi) |}

which is known as the Chebychev criterion and describes a minimization
of the absolute value of the maximum deviation. In this case, taking
the 1limit as p=* in the formulation given as Problem GR2 results in

the computationally equivalent problem:

minimize e

subject to
DB= 4 (optional)
-ef(xB)i-Yife for all i

n+l

BeR™ ', etR, e Zo.

which is, clearly, amenable to the methods of linear programing.

2.3.3 Regression Under lp:

Recognize that regression under 21 and regression under £
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are just particular problems fram the more general family of regression
problems based on the lp metric. Typically, in zp approximation
one is concerned with regression problems based on the 2.p metric

when pfi{l,”]. For pe(0,1) the Rp metric does not induce a nomm
because the triangle inequality is reversed (see Section 3.1). More-
over, for pe(0,1) the resulting optimization problem is not within
the domain of convex programming because the objective function to

be minimized is concave in the parameter B. In general, we will
restrict attention to the case where p z l--the computetional as-

pects of which are summarized as follows:

Estimate Solution Procedure

1 LAVE linear programming
1<p<w® lp nonlinear (convex) programming

© MINIMAX linear programming

It follows that the most common regression problems are based
on the JLP metric where p = 2 + e, That is, it is often instructive
to look at the resulting estimates which are "almost 22" in the
sense that p is specified to be in some e-neighborhood of 2.

In particular, empirical results by Forsythe [22] suggest a
strong case for ZP approximation where p = 1.5 under certain

conditions concerning outliers in the data. Unfortunately, his

resulting model is not amenable to the methods of linear programming.
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In this study, Forsythe employed the gra.@ient projection method of
Fletcher and Powell (see [22]). Although this optimization procedure
is theoretically sound, it requires the evaluation of a derived func-
tion (first order derivative) and other complexities associated

with nonlinear programming.

We will not pursue the subject of ILP approximation further
since the intent of this analysis is to demonstrate the strong equiva-
lence between discrete lp approximation and what may be termed
"generalized" goal programming. Just as regression has historically
been based on the &, metric (without side conditions) so has goal
programming been based, for the most part, on the !1 metric. In
both cases, these approaches afford significant computational advan-

tages. Namely, the resulting problems are inherently linear.
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3. A MINIMUM NORM APPROACH TO VECTOR MAXIMIZATION

In this chapter we will revisit the 1in¢ar version of the
vector maximum problem and develop & solution procedure to identify
efficient éolutions. The results contained herein do not contribute
significantly to the computational aspects gf the problem, The
primary emphasis of this chapter is the development of new insights with
regard to the complex nature of multiple criterion decision-meking.
Moreover, these results are used as a foundation for the material
presented in Chapter 4 where stronger computational results are pre-

sented for a more general problem.

3.1 Mathematical Preliminaries

In view of the fact that the results of this chapter are based
on minimizing the norm of a vector (hence, a minimum norm apprcach)
we now present the following well-known results on norms and general

" solutions to linear systems.

DEFINITION 3.1 Let X be a linear vector space. Then a real-

velued function, denoted by ||.||, which maps each element x in
X into a real number is called the norm of x if it satisfies the

folliowing exioms:

v

1. |lxl] = 0 for al1 xex,
2. ||x|] =0 if, and only if, x=0
3. |lax|| = |a].|]x|] for all R and each xeX, and
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b ||x + y]| s Hx” + Hy“ for each. x,y€X (triangle equality).

Clearly, the norm is an abstraction of our usual concept of length.
In particular, Hxll defines a measure of length from the point
x, in some vector space, X, to the origin, ZLikewise, ||x-y]]
defines a measure of length between the two points x and y in
some vector space. Note that there exists a spectrum of functions
which satisfy the properties of a norm. For purposes of our dis-

cussion, we will utilize the well-known metric

e [

which can be shown to induce a norm for p - 1. We will also

have need of the following property of norms.

PROPERTY 3.2 Let x and y Dbe any two elements of a normed linear

vector space. Then

sl] = 1l < 1 - 911

The solution procedure to be presented is based on a minimum
norm problem where the particular norm of interest defines the
Euclidean distance, Furthermore, the epproach is based on the

generalized inverse approach to the solution of a linear system. A
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conceptual interpretation of the relationship between Euclidean dis-
tance and the generalized inverse solution tc & linear system is

now presented.

Let the linear operator C define s mapping C: RnﬁRk S0

thet C is a kxn matrix and consider the two vectors

* *
z ,Cx eRk

* n *¥ n .
where X eR ., If there exists an x €R~ such that

*
then Z 1s said to be an element of the row space of the matrix C.

. _
We represent this situation notationally as Z eR(C) and note that
inimgn | [0 || =0 when ZeR(C)
mi X - = whe €
Xe ,

*
as a consequence of Definition 3.1. However, if Z fR(C) then

there‘does not exist a vector xeRn such that

In this case,

mini llcx = 2°|| > 0 when Z fR(C).
Xe
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Now, let ZeR(C) be arbitrary and consider the general linear system
Ky
Z = Cx. (3.1)
Then a solution, x, to (3.1) is given as
- %
x=C2Z,

*
where C denotes the nxk generalized inverse of the kxn matrix

C, since

by the inverting pfoperty of the generalized inverse (see Appendix
A). This solution % is, in general, not the only solution to the
system (3.1). One possible approach to the identification of all
possible solutions is based on the concept of a npll space of the

transformation (i.e., matrix) C.

DEFINITION 3.3 Let C be an arbitrary kxn matrix. Then a

vector xoeRn is seid to be an element from the null space of the

matrix C (i.e., x°eN(C)) if, and only if,

Cx =0,
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With regerd to the solution of system (3.1), if x is & solution to

BNy >

Cx =

then any vector

is also a solution to system (3.1) if, and only if, x el (C)

since
Cx=Clx+x)=Cx+Cx°=Cx=2

Thus, the set of all solutions to (3.1) can be obtained by adding
each vector in N(C) to X. The uniqueness of a solution to (3.1)
depends entirely upon whether or not N(C) consists of only the
mill vector (i.e., x = 0) which is true if, and only if, ' € is
nonsingular. In pursuit of a procedure to identify these alterna-
tive solutions we present, without verification, the following

intermediate result. Namely,
- * * .
{x|xeR®, Z = ¢x} = {x|xe®®, x =C 2 + (I - CC)Y, YeR°}. (3.2)

*
Here, (I - C C)Yy defines a vector from the rmull space of the matrix

C (see [26]). Moreover, by allowing Y to span R~ we can obtain



Lo

every vector in N(C) ‘and hence, in view of (3.2), all possible
solutions to (3.1). |
It is often the case, however, that we are interested in the

linear system

where ZFR(C). This, of course, implies that there does not exist

a vector xeR# such that Z = Cx (i.e., the system is inconsistent).
The "least squares” property of the generalized inverse ¢* now be-
comes an impor?:a.nt igsue.,. Assume ZeRk ié an arb:_ltrazy vector such

that ZFR(C) and consider the transformation
* *
Z =CC Z.
*
It is a consequence of the generalized inverse that Z is an ele-
%
ment of R(C). Furthermore, Z is that unique vector which has

minimum Euclidean distance to Z fram among all vectors in R(C).

Thus,

is a solution to the linear system

Z = Cx,
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This least squares property of generalized inverses can, perhaps,
best be illustrated by considering sn equivalent optimization prob-
lem, Since this property will be useful later in the development,

we present the following results for further reference.

LEMMA 3.l Let C be any km matrix and let ZeR® be an arbi-

trary vector. Then there exists a vector 5&, ;ceRn, given as

>
(]
Q
N

which is a (unique) solution to
minimize ||x|]
subject to
||Cx - Z” to be a miniwum
where | |. | | denotes the Euclidean norm.
COROLLARY 3.5 et % =C'Z so that |lck - 2|l =a. Then

x| ||cx - 2|]| = o) ={x|x= 'z + (1 - c*C)Y,YeRn},

We will now proceed to construct and analyze a minimum norm prob-

lem to identify a class of solutions to a linear version of the vector
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meximum problem. Particular attention will be focused on alternative

optimal solutions to the problem in view of Corollary 3.5.

3.2 A Classification -of Efficiency

The prccedures developed by Evans and Steuer [20] are based
on the characterization of the set E (i.e., the set of all effi-
cient solutions) by identifying the elements of the set EB(EB =
{x|xeE and x an extreme point of S}, § = {x|xeRn, Ax = b,

X = 0}). As an alternative we will develop a procedure to charac-
terize the set E by appealing to a subset E22 defined below.

The results of this chapter assume that the following condition is

satisfied for the vector maximum problem, Problem LVM,

CONDITION 3.6 Assume there exists a vector Z°€Rk such that

o < >
7° » Cx for all xeS = {x|aAx = b, x = Ok

This condition will be given further attention later in this chapter.
Moreoxlrer, Chapter L4 provides the results needed to relax this assump-
tion.

In view of fact that Euclidean distance is determined by the
%5 metric for p =2, consider the following extension of the
concept of efficiency, |

DEFINITION 3.7 A point x°e€S is said to be &, -efficient if, and

2
only >if, there does not exist another xeS such that
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O
llex - 2°1] < |lex® - 2°||

when Z° 1is a vector which satisfies Condition 3.6 and ||.

denotes the Euclidean norm.

Just as EB relates to and characterizes E we now choose to

characterize E by appealing to & subset E 2 defined as

= {x|x¢S and x is 22-efficient}.

Bo
Establishing the relationship between E,?,2 end E we have the

following result.

Ims 3.8 B, CE.
Proof Let x°cE,, be arbitrary and assume x fE. It then follows

*
by definition that there exists some point x ¢S such that

Hence,

Hex™ - 2°]] < |lex® - 2°

But this implies that xo;sza and the result follows.

We begin the development with a restatement of a linear version

of the vector maximum problem given as:



PROBLEM A

"meximize" Cx
subject to
< >
xeS = {x|xeR", Ax = b, x = O}.

The definition of %, -efficiency suggests the following minimam

2

norm. problem.
PROBLEM B Find an xo,' if it exists, for which

lex® - 2°]] = minimm |lex - 2°1]
XE€S
The relationship between the minimum norm problem, Problem B, and
the vector maximum problem, Problem A, is e;tablished by the follow-

ing result.

LEMMA 3.9 IIf there exists a soiution 'xo which solves Problem B
then

1. x° is %-efficient for Problem 4, and

2. xo is efficient for Problem A.
Proof The result follows immediastely from Definition 3.7 and

Lemma 3.8,
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Recall from Section 3.1 that CxY, where - x, is given as

* *

x, = C z° + (I - C C)Ys YER®,
defines that vector in R(C) which is a minimum Euclidean distance
to z°. 1In view of this result, consider the following problem and

corresponding Lemma,

PROBLEM C Find a Y, if it exists, such that
* * <
1. AxY=A(CZ°+(I-CC)Y)=b,

¥* ¥* >
2. xy:CZ°+(I-CC)Y=O,

3. YeR".

IEMMA 3.10 If there exists a solution ¥ which solves Problem C

" then
1. x o solves Problem B, and

2. X o is 2.2-efficient for Problem A.

Y

o
Proof, If y  solves Problem C then, clearly, x .65 so x _ is

X Y
feasible for Problem B. Moreover, in view of Corollary 3.5, x o
3 - } Y
is also optimal for Problem B and hence, by Lemma 3.9, x o is 92-
Y
efficient for Problem A.



Although Problem C is amenable to the methods of linear programming,
this intermediate result is not sufficient. In particular, it is
quite possible that there may not exist a feasible soluticn to
Problem C even though there exists solutions to Problem B. In-

feasibility of Problem C indicates that
{x, [CxYeR(C), | chv - z°]| is minimm}Nsg = @,

Consider the following variant of Problem C.

PROBLEM D
minimize |[8]|

subject to
1. llex - (2° - 8| =0, (3.5)
2. x€8, (3.6)
3. SRS, &2 o0, (3.7)

With regard to the feasibility of Problem D, we have the following

result.

ILEMMA 3.11 Assume Condition 3.6 is satisfied . Then Problem D is

feasible if, and only if, Problem A is feasible.
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' * ¥
Proof. Let (x ,8 ) denote any feasible solution to Problem D.
* *
Then, in view of (3.6), x eS and hence x is feasible for
*
Problem A, Conversely, let x denote any feasible solution to

Problem A. Then (3.6) holds and letting

satisfies (3.5) and (3.7) under Condition 3.6.

With regard to the optimality of Problem D, we have the following

intermediate result.

LEMMA 3.11 If (x°,8°) solves Problem D and ¢&° = O, then

1. x° solves Problem B, and

2. x° is 2,-efficient for Problem A.

Proof. When 6° = 0, Problem D is equivalent to Problem C.

Hence, the result follows as a consequence of Lemma 3.10.

Problem D has the following intuitive interpretation. If we
can find a vector z*st, zZ' = (z° - 6%)en = {Z|Z =Cx, xeS} which
has minimum Buclidean distance to Zz° from among all vectors in Q,
then any xeS for which |[|Cx = Z*|| = 0 solves Problem B, This

problem can be simplified into a more computationally attractive
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problem by noting that
[Icx - (2° - §)|| =0 <« (2° - §)er(C).

But we can guarantee that (z° - 8)eR(C) by.enforcing the (linear)

condition that

_ . |

(z° - 8) = cc (2° - ®).
Furthermore, we can now exploit the generalized inverse by utilizing
the fact that any x for which |[|cx - (2° - 8)|| is a minimum can
be represented as

* ) *
X, 5=C(22-8)+ (xT-CC)
Y

which suggests the following extension of Problem D.

PROBLEM E
minimize ||&]]
subject to
* *
1. Ax _=ALC (2 -68)+(I-CC)yl=D

Ys$

¥* ¥*
2. x . =C(22-8)+(IT-CCly=0

Y,8
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3. (2° - 6) =,‘cc*(z° -8)

b, yRR, SRS, 6

itv

0.

Since the particular norm employed in the objective function
is the Euclidean norm and since ¢ must satisfy the restriction
§ 20, Problem E is amenable to the methods of quadratic (convex)
programming, Moreover, available software will identify the optimal

solution since the objective function assumes the quadratic form

minimize y'Py + 0'y

where yeRn+k R

f ]
1
Imm i on.x.k
]
P: ————— -: ——————
:
%xn | Otk
L J

which is positive semi-definite. With regard to the optimality of

Problem E,we have the following key result.
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IEMMA 3.12 If (y°,6°) solves Problem E, then

* *
x =c (22 -8)+(T-ce)
Y s$

is 2.2-efficient for Problem A.

Proof, Note that if x° solves Problem B then, in view of Lemma
3.9, x° is 12-efficient for Problem A. Furthermore, since
Problem E is equivalent to Problem D, it suffices to show that if
(x°,5°) solves Problem D then X  solves Problem B. Thus, assume

x°,6°) solves Problem D. Then

jox® - (2° - 67)|] = 0
if, and only if,
c'x° - 22 +52 =0 for i=1,...,k
1 1
or, equivalently

ctx® + 2% = 6° for  i=1,...k.
: p 1

Thus, in matrix notation
(o} G o
Cx +2 =6

or

o
[1-cx® + 2°|| = |lex® - 2°]| = |]6°]

But this implies that
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: o .
min ||8]|]| = min ||2° - (Zo - 8)|| = min |lcx - ZOH = ||cx o o ZOH.
§=0 §=0 XeS o Y8

Hence ’ x° solves Problem B.

o 0
Y,$
3.3 Characterization of E&2
Given that Problem E can be used to define g solution xo,
xC€E w2 ¥e would now like to characterize the set E @ Iet @

denote the set of all feasible solutions to Problem E and let
( y°,a°)ea be optimal for Problem E. As a consequence of Corollary
3.5, for each yeR® such that (y,6°)es2 we have

o)

X = c*(z -8+ (1 - C*C)y ~ (3.8)

Y
which defines an 22-ef£icient solution to Problem A, Moreover,
in theory we can span the set E,L2 by finding all possible yeRn
such that (v,6°)eR? and X, (defined 3.8) is contained in E, oo
Of course it may be possible that the subset ESLZ’ EzzeE, contains

an infinite number of points. Although we can, in theory, identify
each element of E9«2’ we seek a procedure to guarantee finiteness

of the algorithm. In view of this, it is proposed that the iteration
of all alternative optimal solutions to Problem E will provide a
meaningful characterization of the set Eza, the elements of which
are determined by (3.8).

The approach presented in this chapter poses some serious compu=-

tational questions. In particular, the formulation given as Problem E
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is not completely equivalent to Problem A in the sense that feasi-
bility (and hence optimality) in Problem E does not guarantee
feasibility (end hence optimality) in Problem A. Problem E is appro-
priate and valid under the assumption thet Problem A has a feasible
solution and that there existé a vector Z° which satisfies Condi-
tion 3.6. Note that the specification of Zo, assuming Condition
3.6, is trivial., (It is sufficient to define each of the k compo-
nents of z° to be an arbitrary large positive number.) Perhaps
the most significant weakness of this approach is the computation
of the generalized inverse of an arbitrary matrix--this in itself
is a significa;nt computational task.

The computational aspects of this approach not withstanding,
the development does provide insight with regards to the complexities
of multiple criterion programming. In particular, this procedure
provides a way to characterize the set of all efficient points by
appealing to a subset EMEE. This pﬁtitioﬁm of efficient so-
Iutions based on the '&2 metrix suggests other characterizations
based on alternative metrics. . Such is the motivation behind

~and primary thrust of the following chapter.
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L, MINIMUM Qp NORM PROBLEM AND CONVEX PROGRAMMING

In the previous chapter a linear version of the vector maximum
problem was recast as a minimum 22 norm problem. This resulting
problem was shown to be sufficient in the sense that a solution to
the minimum norm problem defined s solution to the vector maximum
problem, Since particular attention was focused on the Euclidean
norm, it followed that the branch of convex nonlinear optimization,
known as quadratic programming, was appealed to as the solution pro-
cedure. Moreover, an approach to the characterization of the set
of all efficient solutions was presented based on the properties of
the generalized inverse solution of a linear system. The insight
developed with reéard to the minimum 12 norm problem suggests a
similar approach for the more general ﬂp norm problem. Follow-
ing in spirit the approach of Chgpter 3, the primary emphasis of
this chapter is focused on linear multiple objective programming
problems. Within this context we will review and extend the concept
of efficiency and construct a sufficient minimum norm problem. Since
this more general problem is based on the minimum lp norm, it
follows that a more general convex programming solution procedure
be employed to identify the solutions of interest. To this end, it
will be shown that a geometric programming problem can be constructed
to seﬁe our needs. Accordingly, a dual geometric programming formu-
lation will be given with some rather extraordinary properties.

Before constructing the primal and dual geometric programs,



56

let us restate the linear miltiple objective progra.mming problem as:

PROBLEM A
"maximize" Cx

subject to

it A

x€s = {x IxeRn, Ax

4.1 Another Classification of Efficiency

Recognize that a decision-maker might be overcome with the set
of all efficient solutions to a linear multiple obj ective program-
ming problem of the form given as Problem A. In Chapter 3 a proce-
dure was presented whereby the decision-meker could charaéterize

the set E with a subset E, Consider now, the more general

o°
concept of Rp-efficient solutions and the resulting subset E 2

to be used as a characterization of E. As with the definition of
2,2-efficiency, the definition of lp-efficiency depends critically
on Condition 3.6 which we restate for convénience of reference as:

CONDITION L4.1 Assume there exists a vector ZCeRS such that

0 n < > }
7° 5 Cx for all xeS = {x|xeR, Ax = b, x = 0J,

In view of the fact that fhe metric

) p{1/p
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induces & nomm, which we will denote as the &, nomn [.]|p, con=

sider the following definition of zp-efficiency.

DEFINITION 4.2 A point x'eS is said to be L_-efficient if, and

only if, there does not exist another point =x€S such that
[lox - 2°)|_ < |]ex® - 2°)
P P
vhere Z° is a kxl vector which satisfies Condition k4.1,

For the sake of completeness it should be pointed out that
the zp metric induces a norm provided that p Z 1. For pE(0,1)
the triangle inequality given in Definition 3.1 is reversed and,
hence, the resulting function does not satisfy all of the required
properties of e norm. In this case, we can view the lp norm
as a "qﬁasi—normﬁ (see (21).

It can be shown (see [2]) that any norm defined by the zp
metric, pe[l,®), is convex in the variable x--a very useful prop-

erty that will be exploited in later sections. Throughout this

chapter it is assumed thet the norm, .llp, is defined by the
metric % where pe[l,%).
As a consequence of Definition 4.2, we now introduce the

following definition:

Ezp = {X|xeS and x is xp-éfficient}a
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Thus, a stronger version of Lemma 3.8 is now given as

IEMMA 4.3 E _CBE.
LEMMA 3.3 B, C |
Proof. The proof of this lemma follows the proof of Lemma 3.8 where

the Fuclidean norm is replaced with the general gp norm.

Following in spirit the initial development of Chapter 3, con-

sider the minimum norm problem:
PROBLEM B Find an x°, if it exists, for which

HCxo - ZOHp = minimum HCx - ZOH
XES P

The relationship between this minimum norm problem and Problem A

is given in the following result.

LEMMA 4.4 Assume there exists an x° which solves Problem B. Then
1. x° is § -efficient for Problem A, and

2. xo is efficient for Problem A

Proof. The proof follows from Definition 4.2 and Lemma 4.3.

But Problem B may be expressed equivalently as:
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PROBLEM C

minimize l IYI lp
subject to

lox - (2° -v)||_=o

P

XeS

Ye‘Rk,Y 2 O.
Superficially, Problem C appears to be a more complex optimization
problem. However, it will be shown that the resultirig problem has
e set of constraints that are virtually linear. That is, an
equivalent set of linear constraints can be constructed as a substi-
tute for the current set. Of more immediate interest are the fol-

lowing relationships between Problems A and C.

LEMMA 4.5 Problem A is feasible if, and only if, Problem C is
feasible.
Proof. This proof follows the proof of Lemma 3.1l where the

Euclidean norm is replaced with the more general zp norm.

IEMA 4.6 If (x°,v°) solves Problem C, then

1. x° is 4 -efficient for Problem A, and

2. x° is efficient for Problem A.
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Proof. The proof of this result follows as a consequence of

Lemma 4.4 and the relationship between Problems B and C.

4.2 An Equivalent Geometric Program

The development of a solution procedure for Ep-efficient solu~
tions dictates a more lgeneré.lized solution procedure than that

presented in Section 3.2. In particular, since -efficiency is

2
2

based on a minimum £, digtance, it followed that quadratic pro-

2
gramming provided the computational support. However, we are now
faced with & more general convex programming problem where geometric
programming can be employed. To facilitate the construction of

this geometric program we first note that

k 1/p k ] 1/p
[v[] =1 = Ivilp =] ¢ vF
P i=1 j=1 *

since y = 0. Moreover, it follows that

M x 1/p
minimize v P
i
i= f
L ‘;
is equivalent to
k
minimize I v.P
i=1

since p z l, With regard to the constraint set of Problem C we have
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O
!le-(Z -l =
if, and only if, <
[ B @ - |7
Eolr e x - (%) -y, =0
| i=1 j—-l JJ '

or
n o
I ec,.x, + Y -2, = 0, 1=l,e00 5K,
§=1 ijd 1

Observe that this system may be expressed equivalently as

n o <
Z cleJ + Yl - Zi - O, i=l,.tn’k
J=
n o <
- Z ci Xoo= Yi + Zi - O, . i=l,ouu’k
oy 1973

In view of the sbove transformations we are now prepared to present

an equivalent convex programming problem given as:

PROBLEM D
k
minimize I Yip
i=1
subject to
n o <
z Ci.x. +Yi-zi-0 i=l,...,k
3=1 Jd J
n <
o)
bnd z C. .x. - Y. + Z. - 0 i=l’l00’k

z a,.xX - b. - O i=l’-..’m
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- X "O j=l,..-,n

N

- Y -0 i=l,.o-,k

To construct the geometric programming problem of interest

we utilize the following one-to-one transformations (see Appendix C):

TRANSFORMATION L

x; = zn(wj) J=lseeesn

Yi = R’n(wn+i) l=l’.'o’k

bi = En(Bi) i=l,-oc’m
o .

Z; = n(U;) i=l,..e5k

The resulting convex programming problem will be of the form:

PROBLEM E (Primel Geometric Program)

minimize G(w;p)

subject to

i J:l n+i - l i=l,oo¢,k
n a

-1 ss <

B mowY -1 i=1,...,m
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Wi a1 351y ee0,ntk
with the implicit restriction that W.J' >0 for all j.

Here we make note of the fact that Ui s Bi >0 for &1l i as a con-
sequence of the logarithmic transformations employed. Moreover, if
the objective function G 1is a posynomial then Problem E is amenable
to the methods of geometric programming. For future reference
we will let & define the set of all feasible solutions to Problem E.
The task of interest is the construction of a posynomia.ll G, which
is a function of the vector w and the parameter p, such that if
w° solves Problem E then we can utilize our logarithmic transfor-
mations to define a solﬁtion x‘o which solves Problem D.
in pursuit of this objec*l-_,ive'f\mction ‘G(w;p) we first note
that, ideally, we seek a posynomia.l G such that
k
minimize I _Yip <> minimize G(w;p)
i=1
under Transformation L. Research to date has not yielded such &
function. However, it is suffiéient to identify a function G such
that
k

minimize G(w;p) => minimize I YiP
i=1

under Transformation L since this is sufficient to solve Problem D.
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If we could define

then we are done. However, such a function is not a prototype

. posynomial, Consider, now, the expression

-
1 k D k p]
EXPYy X v;" | =ExP| I (*n(w;))
i=1 i=1
where
2 >
= 1] -
Y:i. (wn+i) 0

>
where LA 1. Clearly,

k
minimize EXP .121 (mn(wm_i))P.}

may be expressed equivalently as

k
e . P
minimize o EXP [-(Rn(wmi)) J
or
k )
maximize m EJCP[ -(ln(wn_,_i))pJ .
i=1 ’

But this is equivalent to

k r
maximize ‘n{ 7 EXP L-(Zn(ww'i))PJ }
i=
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or,
k P
maximize I 2n{E}CP[-(2n(w R
| i=1 A
which simplifies to
k
- ) 2
maxinize ‘21 _(&n(wh+i))
or, equivalently,
k .
e e p
minimize i=2.:1 (f(w, . ))". | (4.1)

Although this intermediate expression will, in theory, yield the
desired result, the presence of the logarithmic function complicates
the solution procedure. Further analysis of the functional suggests
that we consider the relé,tionship |

>

- 2’
W .. n(wn

n+i PR 1=lyenk

which is true for any L > 0. Consequently, for p Z1 and

1
Y; -
W " s

wo, = Gn(w )P, i=1ye005k (4.2)

It then follows that an upper bound on the functional of interest

in (4.1) is then

K K |
f0np) = T (fn(w . ))P = =z LR ACH R (4.3)

This intermediate result is of particular significance. Recognize
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first that if we define

G(w;p) = £, (w;p)

then Problem E is completely equivalent to Problem D under Transfor-
mation L. If § defines the set of all feasible solutions to

Problem E, then Problem E may be expressed as

minimize fl(w;p) (4. k)
subject to

WEe

It is a well-known fact (see [41]) that w  solves (k.h) if

W solves the problem

minimize £, (w3p)
subject to

weld
and

£ (w;p) = £,(w;p) (4.5)

But, in view of (4.2) and (4.3), expression (L.5) is always satisfied
for any weQ. Thus, we conclude at this point that it is sufficient

to solve the following program.
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PROBLEM P
k
minimize 'El wﬁ +i
‘subject to

wel,

Observe now that the resulting program, Problem F, is amenable to
the methods of geometric programming where the objective function is
a posynomial and the constraint functions are single-term posy-
nomi;a.ls, or monomials. Moreover, as a consequence of our develop-
ment, in particular expression (L4.3), we cen summarize our results
thus far by stating the following.

IEMMA 4.7 If w° solves Problem F, then there exists an x°
defined by Transformation L which solves Problem D.

Proof. If we define '

x
a(wsp) = = (en(w_,.))F

i=1 n+i
then, clearly, Problem E is completely equivalent to Problem D
under Transformation L. Thus, the sufficiency of Problem F fol-
lows in view of the fact that expression (4.3) is valid for any wef.
Note that Problem F can be used to define a dual geometric pro-
gramming problem (see Appendix B). This resulting dual problem is

also amenable to the methods of convex (nonlinear) programming since



68

the dual problem is one of maximizing‘ a concave function over a set
of linear (convex) constraints. However, in view of the relation-
ship between linear programming and geometric programming with
monomial functions (see Appendix C), it behooves us to consiéier the
feasibility of yet another surrogate ob,jective. function which is
monomial.

Consider specifying G(w;p) to be a monomial function of the

vector w and the parameter p such that

k

£ Wb = awsp).
i=1

Assuming such a monomial function exists,. this sugge;ts the follow=~

ing extension of Problem F,

PROBLEM G
minimize G(w;p)
subject to
wefd
and
k < -
£ oW, - Glwsp) (4.6)
i=1l

To demonstrate that such a monomial function always exists we have:
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 IEMMA 4.8 Iet ui, Upse+ss, De real mmbers thet satisfy u, 21

for i=l, eee ’no 'ﬂlen

n n
<
z u.p-n'rr u.p

i=1 1=

for any pell,=).

Proof. Observe that

n n n D _
n u.:l._p = I T W ' (4.7)
i=1 i=1 i=1 *

Now, to establish the validity of this lemme it suffices to show that

n
0PI on P

l . l for j=1’000’n.
i=1

But this follows immediately since u 2 1 for all i and pell,»).

i

As a consequence of Lemma 4.8, if we now define

k
Glw;p) = k7 W,
3=1 n+i
then Problem G takes the form
k
minimize k m "’3&1 .
wef i=1 :

Note that explicit inclusion of expression (4.6) is unnecessary in
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“

S . .
view of the fact that weQ implies that w = 1. Hence, expression
(4.6) will always be satisfied, in view of Lemms 4.8, which suggests

that a solution to Problem D may be obtained by solving the program

given as:
PROBLEM H
k
i nimi p) = kT
minimize G(w;p) = k. W£+i
i=1
subject to
n c,. <
Uil “ll[jw.ljJ Wn+i had l i=l,.-.,‘k
=1 9
n --cij 1 <
Ui .“ Wj Wn+i - l 1=1,ono,k
J=1
n a
-1 3 < . .
Bi 'ﬂ wji; -1 i=l,ee.,m
J:
wgl 1 G=1, 40,0k,

Before investigating the corresponding dual geometric pro-
gramming we will make some definitions to obtain notational simpli-
city. Since each function has a single term (monomi el functions),
it follows that each function will have one associsted coefficient.

Thus, we incorporate the substitutions:

D =k
[¢)
-] .
Di = Ui 1=l,00.,k
ket = Vi =Lk
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D . =B i=l,-oo,m

= l : i=l,...,n+k

Likewise, for the exponents of the variables, wa., we define:

i —
1
0 1,n E (P:-":P)l K
------------- ?-----—-—---‘--------—-
ck,n i Ik,k
E S (| wemewsesasoee oo r——---«--l—---—-—----—-—
i
“Cx.n i Ty ,x
------------- r-------—------——-—-—-
i 0
Am,n ' m,k
~ (n+) , (n+k)

so that E is (3k +m+mn+1) X (n+ k). Here the index on

the element eij when i = 0 denotes the jth element in the first
row of E. Accordingly, Problem H may be simplified notationally

and expressed as:

PROBLEM H'
N .
minimize D T w,%Y
subject to
N e, ¢
D, ™ w. -1 3=1,.04,M
J=1
W > o j=l’...’N
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Clearly, Problem H' is a geometric programming problem with monomial
functions throughout. Summarizing our development thus far, we have
the following intermediate result.

IEMMA 4.9 If w° solves Problem H, then there exists an x°
defined by Transformation L which solves Problem D.

Proof. Lemma 4.7 establishes the fact that if w. solves Problem F
then Transformation L can be used to define a solution x° which
solves Problem D. Thus, the validity of this result is established
by showing thet if w’ solves Problem H then w° solves Problem F.
But the sufficiency of Problem H for Problem F follows as a conse-

quence of Lemma 4.8 which implies that

k k
T Tn#i

<
I w,.-k

E I B

when weQ,.

4,3 A Dual Problem

Consider, for a moment, the ramifications of Lemma 4,9, The
geometric program, Problem H, is not completely equivelent to the
minimum 'RP norm program of interest-Problem D. However, Problem H
is sufficient for Problem D in the sense that a solution to Problem H
can be usedyin view of Transformation L, to define a solution to
Problem D. From a computational perspective, this result appears

to be of little value since the original problem of interest is a
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linearly constrained minimization of a convex function. Clearly,
the highly nonlinear nature of Problem H indicates that a sophisti-
cated procedure be employed to obtain the solution. However, as a
consequence of duality in geometric programming, we are now in a
position to construct a dual problem which exhibits significant
computational advantages. Moreover, as a consequence of the first
and second duality theorems of geometric programming (Theorems B.2
and B.3, respectively, in Appendix B), the resulting dual problem
is completely equivalent to its corresponding primal, Problem H.
The dual geometric programming problem corresponding to Problem H'

is given as:
PROBLEM I Find a vector, ¢°, such that

v(&€) = minimm v(¢)

where !' Gi \ 8
D M .(9)
w(8) = 7 |5 ALK
subject to
A (8) =1 ' (normality)
M
L e .6 =0 j=1525...,N (orthogo-
i=0 9 : - nality)
> o e
§, =0, i=0,1,...,M (positivity)
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Here 111(5) = 6i for i=0,1,...M as presented in Appendix B.

Observe that the resulting dual problem is linearly constrained but
that the objective function, v(8), is quite complex and highly non-
linear. With this problemAas with the corresponding primal problem,
Problem H, the computational advantages are, at best, questionable.

Fortunately, the objectivé function can be simplified significantly to

Mmoo 7| m A, (8)
v(8) = m | |5 ™ A, (8)
i=0 i i=1
R
M Di * 61
=D w — (6,)
e} i=1 61 i
M Gi
=D T D .
A .
i=1 *

Also, the monotonicity of the logarithmic functions (see [16])

guarantees that

maximize v(8)
is completely equivalent to

meximize V(§)
where

v(8) = an(v(8)) = an| D. 7 D, .

Thus, the dual objective function can be expressed equivalently as
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M
v(8) = zn(Do) + 121 ln(Di)Gi.

Here, of course, Di >0 fqr all i1 as a consequence of Problenm E.
That is, the Di are coefficients for the monomiel functions in
Problem E which are guaranteed to be strictly positive. Reverting
back to these original coefficients and applying Transformation L,
it can easily be shown that the dual objective function assumes the

form

k o k ° m
V(6) = tn(k) + E - z8; & I Zi& s+ I -bySp
i=1l i=1l i=1
3k+m+n
+ z ln(l)ﬁ.
i=2k+m+1 +

Omitting constant terms and simplifying V(§) we have that the

dual problem, expressed in terms of the original coefficients, is

given as
PROBLEM J
k o k o m
meximize I - Z,8, + I Z)6 ..+ I -b,6 .
=1 i'i 4=1 i k+i 1=1 i 2k+i

subject to



76

- o o e - o - -
]
[}
1
]
]
[]
1
[]

]
o oy
]

]

]

[ ]

]

]

H
1
1
L
{ ]
-
1]

63k-l-m+n -p

and

>
s, =0, 1=1,2,...,3k+m+n,

As a consequence of the first duality theorem of geometric
programming , (Appendix B, Theorem B.2), we can recover the optimal
solution to the primal problem, given that 6° solves the dual

problem, by solving the system:

N e .,
Dy T (w5) © = ¥(&)

3=1

N e
p, m () -2 i=1,...,M for which
i J

J=1 6; > 0.

Or, equivalently, we can determine 2n(w§) J=1,...,N Dby solving

the linear system:

N
n(D)) + I e, fa(w3) = in(v(s°))
o =1 oJ J
N )
2n(Di) + j=21 €y 2n(wj) = 0, 1=1,...,M for which

6‘;>o.
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The solution to the linear programming problem, Problem J, is of

particular significance as indicated by the following result.

3k+m+n

TEMMA L4.10 If there exists a 6°¢R which is an optimal

solution to Problem J, then

1. there exists some w_ which solves Problem H,

2. xg = ln(wg), J=l,eee,n+k solves Problem D, and
0 o .o o' . : -
3. x = (xl, X5 ...,xn) is 2p-eff1c1ent for Problem A.

Proof. (1) follows as a consequence of the theory of duality in
geometric programming (see Lemma B.l, Theorems B.2 and B.3 of
Appendix B). ZLemma 4.9 and Transformation L, under (1), then imply
(2). Finally, the equivalence of Problems C and D together with

Lemma 4.6 imply (3).

Before proceeding further with extensions of this gpproach, it
is instructive to summarize the procedure developed thus far. = Re-
consider the linear multiple objective programming problem of the
form given in Problem A. Under Condition 4.1, we can construct |
& minimum R,p norm problem, Problem C, the solution of which is,
by definition, lp-efficient'for Problem A. Utilizing a sequence
of logarithmic transformations and upper bounding inequalities, we
have constructed a geometric programming problem which is "computa-

tionally sufficient" in the sense that it identifies solutions to the
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minimum R'P norm problem, Problem C. An application of duality
and additionel transformations result in an equivalent dual prob-
lem which can be solved directly by linear programming techniques.

The flow diagram in Figure 1 describes this equivalence chain.

Vector Maximum

Problen

/“\ Condition 4.1
~

Minimum lp Norm l Equivalent Dual

Problem (Linear Program)
A P
I L
Primsl Geometric Dual Geometric

= |

Programming Problem Programming Problem

Figure 1. Equivalence Structure With Condition 4.1

L. 4 Extensions For A More General Problem

In this section we present the machinery needed to extend the

results of the previous sections. 1In particular, we will focus
attention on a more general problem and, effectively, sharpen the

results presented thus far. Recall that the minimum lp norm program,
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Problem D, is sufficient for Problem A only under the rather strong
assumption given as Condition 4.1. Motivation for the development

of a procedure which permits the relaxation of Condition 4.1 is based
on the potential application of these results to such problem areas

as linear regression and goal programming., As presented in Chapter 2,
goal programming, to déte, has been concerned with maximizing a mea-
sure of goal achievement (achievement is assumed to be synonymous
with utility) where the particular measure is based on the familiar

zl metric. If indeed one could relax Condition 4.1, then this pro-
cedure could be applied to what may be termed generalized goal pro-
gramming or, perhaps, convex goal programing as recéntly introduced
by Charnes and Cooper [7] end studied by Charnes, Cooper, Klingman,
and Niehaus [8). Let us revisit Condition 4,1 and consider the impli-
cations of this assumption with regard to a more general problem.

Recall that Problem A has a constraint set of the form
S = {x|xeR", Ax = b, x = O}.

Condition 4,1 states that there exists a kxl vector z° such
that 2z° > Cx for all xeS. In the context of & goal progremming
problem (see Section 2.2), this condition is clearly unwanted. For

example, & generalized goel programming problem could be formmlated as

minimize ||Cx - Z°||
xeS P
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where ZQERk is an arbitrary vector not subject to the assumption
that Z° > Cx for all xeS since the goal formilation here is one
of simultaneous attainment as opposed to simultaneous meximization.
Such is also the formulation of constrained regression problems
which we will consilder further in the next chapter. Without loss

of generality the more general problem may be stated as
PROBLEM K

minimize | |Cx - Zo l lp
subject to

<
xeS = {x|ax = b}
: ok . .
where pell,») and Z eR is arbitrary.

Observe thet we have redefined S so that explicit restriction

of the vector x to the nonnegative orthant is relaxed. Cer-
tainly, some or all of the components of x could be constrained
to be nomnegative within the new formulation of S if desired. The
significance difference in this formulation is that z° is arbi-
trary so that Condition 4.1l is not appropriate. Before examining
the ramifications of Condition 4.1 and the more general problem

we follow, in spirit, the transformations presented earlier in this

chapter and expresses Problem K equivalently as
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PROBLEM M

s Y
minsmize |1¥]]
subject to
lex - (2° - VI =0
Y
<

Ax =D

xeRn, YeRk.

Since ZOF-"Rk is now arbitrary, it follows that the deviation vector
xeRk must have components which are unrestricted in sign. This is
precisely the motivation behind Condition 4.1 in that this assump-

tion insures that

It v

which is essential in the proof of Lemms 4.5. For the more general
problem & substitution of variables can be used to circumvent this
dilemma so that the results presented thus far are valid without

enforcing Condition 4.1. Iet us re-state Problem M as

minimize ||y| Ip

(X’Y)EQ’

where  denotes the set of all feasible solutions to Problem M,

and note that this program may be expressed equivalently as
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minimize ||yllp

subject to
<
vl S il (1.8)
(x,Y)EQ
k >
yeR , ¥y = 0.

Note further that restriction (4.8) is guaranteed to be satisfied

when the restriction
-y- - Y - y- i=l,o.c’k
is enforced. Applying these substitutions we have that

minimize “yllp
subject to

< <

-yi Yi - yi i=l,cco,k
(x,v)eR
yERk: y 2 0

is sufficient for

minimize [ly[lp.

subject to

(x,v) €8
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Here, of course, pell,~). Thus, a counterpart to Problem D which is

sufficient for the more general problem, Frovlem M, is given as

PROBLEM N
minimize ||y| |p
subject to
n o <
z C. X + Y. - Z. el O i=l’l..’k
o1 107 i i
n o <
.—Z - Cijxj - Yi + Zi - 0 1=l’ooo’k
J_
n <
Z ai.x. = b. - O i=l,.-a’m
s WA
< .
Yi - yi -0 1=l,ol|’k
< N
—‘Yl - yi - O 1=l,.-c,k
< .
'yi -0 1=l,ol‘,k
YeRk, xeR®

This resulting formulation of Problem N is identical, in construction,
to the linearly constrained %p norm program given as Problem D

since nonnegativity of the vector y ensures that

inimize li |l
ninimiz ¥y D

is equivalent to
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It then follows that a sufficient geometric program with monomial
functions can now be formlated if we redefine our logaritimic trans-

formations to be

TRANSFORMATION L'

x; = Zn(wj) i=l,..e,n
Y, = m(wn+i) i=l,.e.,k
¥, = m(wn+k+i) i=lyeee,k
b, = (B;) i=1,40.,m
.zg = ta(u,) 1=1,00 0,k

Utilizing our new transformation, Trensformation L', the geometric

progrem can be expressed &as

PROBLEM O
T
minimize k;]:l neHicHS
subject to

1" c:[;]ﬁ <
Ui L [Wj J wn+i - l i=l,olo,k

S1 0 i=l,....k
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1 B e
B. w w.lJ - l i=l,.--,m
i J
J=1
-1 < . .

Wn+i Wn+k+i - l l=l,o-.,k
-1 -1 < .
v'n+i wn+k+i - l . l—l,.o.,k
-1 < .
wn+k+i - l ‘ l—l,o..’k

with the implicit restriction that L 0 for i=l,...,n+2k.

Observe that Problem O is identicel in construction to the geometric
program given as Problem H. Therefore, it follows that the substi-

tutions for coefficients:

D, =k

D, = U i=1,..00k
s = Uy i=l,ee.,k
Dy = By i=1,..0,m
Dypepmss. = 1 i=1,e00,3k

and the substitution for exponents of the variables w.:



i O n Ok (@ ’P)l,k—
Cen Tkx %,k

Cen kx Y%k i
‘ E= A'm,n Qm,k Qm,k
%.n Tkx  Tkk
%k  “hx Tk
Ok %x  Tkk

. J uy

N e,.
minimize Do T oyt
j=1 4
subject to
N cs o<
D, 7 w.od 21 i=1,4..,M
j=1 Y
Wy > 0 . 3=1,...,N.

Accordingly, the resulting dual geometric program is of the form:

PROBLEM P ~
E— 8
MlDi 1 M A, (8
maximize T | |e= ™ A (8)*
i=0 i i=1
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subject to
xo () =1 (normality)
M .
Z ei .&.i = o, j':l, coe ,N . (Orthogo-
j=0 Y | nality)
>
Gi = 0’ i=l,..o’M (POSi—
tivity)

when A, (8) = §, for i=0,1,...,M as presented in Appendix B.

As with Problem J, this dual problem can be simplified considerably

and expressed equivalently as:

PROELEM Q
(o] (e] o §
meximize I - 2.8, + I 7.8 . I -b, .
4=1 ii j=1 1 k+i =1 i 2k+i ‘:
subject to . _
s || [
8 0
2 n
_ 9
T T T .
Cn,k -Cn,k An,m On,k On,k on,k
0
Teor Tor %m Tk Tk Ok 1
. k
- - 8
T R e g A | “okem P
J - .
L
P
k




88

and
8, Zo0, i=1,2,...,5k+m.
The solution procedure, when extended to deal with a more general

problem of the form

minimize |]Cx - Zollp
subject to

<
xeS = {xlxeRp, Ax = b,}

where pell,®) and ZERk is arbitrary,is potentially a signifi-
cant computational result. In its full generality it permits such
a convex nonlinear optimization problem to be solved by linear pro-
gramming techniques. Indeed the key results of this section on
extensions are that ZOERk can be arbitrary and that the decision
vector Xx need not be constrained into the nonnegative orthant.
Moreover, the relaxation of Condition 4.1 permits the exclusion

or inclusion of the set S to be optional. These extensions,
therefore, expand the scope of the procedure to include the general-
ized 1linear regression problem (referred to as the %p approxi-
mation problem in Chapter 2) with or without linear side conditions

as well as the generalized goal programming problem based on the 2p

metric. This equivalence chain is described in Figure 2.
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Equivalent Dual <€__> Duel Geometric
(Linear Program) ' Programming Problem
0
~~
Minimm % Norm <___ Primal Geometric
Problem Programming Problem
- i
T
i -
Generalized Goal <%__> Discrete %p
Programming (EP) Approximation

Figure 2. Equivalence Structure for pell,®)
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5. ASPECTS OF DUALITY

In the previous chapter, a sufficient programming problem was
constructed to solve a linearly constrained minimum RIP norm prob-
lem. Furthermore, duelity wes employed to provide an equivalent
problem, to the sufficient program, with some rather significant
computational advantages. WNote that the theory of duality was
utilized for the resulting (sufficient) geometric programming
problem and not the minimum norm problem itself. The results of
Chapter 4 not withstanding, this suggests the plausibility of apply-
ing duality results directly to the minimum norm problem in pursuit
of a more computationally attractive model,

The intermediate results presented in this chapter do not con-
tribute significantly to the computational aspects of the problem.
However, in the spirit of Chapter 3, this development is intended
to provide insight with regard to alternative dual problems asso-
ciated with linearly constrained minimum RP nom problems. The
motivation for the inclusion of this work is derived from the fact
that a constrained minimum norxrm optimization problem is fundamental
to such application areas as linear regression and generalized goal
programing based on the Qp metric.

In considering dual problems we will note that several approaches
to duglity are prominent in the literature of mathematical program-
ming. In particular, the derivation of the dual geometric program,

presented in Appendix B, is based on a problem defined over a vector
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space which is the orthogonal complemenf of the primal space. Hence,
in this case, duality is based on the orthogonality of two.distinct _
vector spaces. Perhaps the most common approach to the construc-
tion and study of dual problems is based on the Lagrapgian function
(see Kuhn and Tucker [33], Mangasarian [37] or Sposito [41)) which
we shall address as Lagrangian duality. (It is interesting to

note that the lLagrangian approach and the orthogonality approach to
duality in geometric programming result in identical dual problems
as evidenced by Theorem B.2 of Appendix B.) We now present some
relevant results on duality for the linearly constrained minimum

norm problem.

5.1 Orthogonal Duality

The results of the previous chapters are based on the norm
induced by the lp metric where p 2 1. Recall that a nom is
any real-valued function which satisfies the properties of & norm.
In pursuit of generality, it will be assumed that the norm | l. | |
denotes any functional satisfying axioms 1 through L4 of Defini-
tion 3.1. Thus we include, as a special case, the lp norm; but
we are certainly not restricting ourselves to this function. With
regard to the orthogonality of vector spaces, we first introduce

the definition of aligmment.

DEFINITION 5.1 A vector =xeX is said to be aligned with a vector

yeY if
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9> = Hxllo ]yl

Observe that alignment is a relationship between two vectors in two
distinct vector spaces. In this case, the vector spaces are the
normgl space X and its normal dual space Y.

Consider, now, the linearly constrained minimum norm problem

given as:

PROBLEM A

minimize |ix]|
subject to

xeS = {x|xeR", Ax = b}

*
Following the development presented in Luenberger [36], let x be

any vector satisfying the constraints of Problem A. Then we have 'tha.t

minimm Hxl |
XES

[y
i

- - *
minigm |[x” - y|].
yeY

It

Here Y denotes the space generated by the rows of the matrix A

and, accordingly, Y denotes the orthogonal complement of Y (i.e.,
§= {yl(y,z) = 0, zeY}). It then follows (by an application of Theorem
2, page 121 in [35]) that



93
* *,
d=min51_1_n1m”x -y||=supremum<x,x>.
yeY xt~:Y<
Hxl1<1

Any vector in Y is of the form

where a, represents the ith row of the matrix A and weRm.
We represent this situation notationally as A'w. Thus, since Y

is of finite dimension,

d = minimm |[|x|]| = meximm (x,x*>
XES ||arwl|=2

Tﬁwﬁ_ (A'w,x )

maximum< b'w
Jlaw] |1

*

where the last equality follows from the fact that x satisfies
*

the constraints of Problem A (i.e., Ax = b). The results of

this analysis are summarized in the following corollary to the de-

velopment,

COROLLARY 5.2 (Iuenberger [36]) Let the linear system

S = {x|x5Rn, Ax = .b},



o

where A is mxn and b is mxl, be nonempty. Then

minimum HxH = maximum b'w.
xeS | 1A |52

Moreover, the optimal x° is aligned with the optimal A'wo so that
G ay = 1111 Hanll,

Although Corollary 5.2 states an interesting theoreticsal result,
the corresponding dual problem does not, apparently, afford any sig-
nificant computational advantage relative to the original primal
program, Problem A. However, the development of this dual prob-
lem, in particular the property of alignment of the optimal vectors
in their corresponding dual spaces, suggests the following approach

to duality via the Lagrangian function.

5.2 Tagrangian Duality

Analysis of dual problems derived from the Lagrangian function
has proved beneficial in optimization theory. Moreover, it is
sometimes the case that a dual problem constructed from ﬁhe Lagran-
gian function has significant computational advantages as with linear
and quadratic programming (see Mangasarian [37] or Sposito [41l).
Although research to date has not yielded significant results for
dual problems associated with the general minimum lp norm problem,

it is instructive to study the relationship between the primal problem,
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Problem A, and a corresponding dual problem given as:
PROBLEM B

maximize b'w
subject to

[amwe !l 2 1.

Consider the Lagrangian function associasted with Problem A expressed
as

o(xw) = lxl] + w' (b - Ax) (5.1)

which is defined over x€S and weR. Likewise, for the dual prob-

lem, Problem B, we have
(w,x) = b'w + g(x) (1 - [law]]) (5.2)

Observe that (5.2) includes a function g(x) which may be viewed

as a Lagrangian multiplier in the same sense that the vector w' re-
lates to expression (5.1) (i.e., W 1is a vector of Lagrangian
miltipliers or dual variables). It is interesting to note that the
function g(x) must provide a mapping g:Rn+R in view of the fact
that Problem B has only one constraint. Research on the relationship
between Problem B and expression (5.2) indicates that if we define

the function g(x) to be
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g(x) = |lx]|

then we can verify the relationship between (5.1) and (5.2). In

support of Corollary 5.2, we assert the following result.

PROPOSITION 5.3 If x° is an optimal solution to (primal)

Problem A and w° is an optimal solution to (dual) Problem B, then

¢(x°,w°) = 'b(wo,xo).

Proof. Upon rearranging terms in (5.1), we have that

¢(x%w%) = [[x°]] + w1 (b - ax°)
= |[[x°]]+ +°'b - w7rax®
= b + ||»xo|| - . . (5.3)
Likewise, substituting g(x) = ||x|| into (5.2) we have
p(®,x°) = b + [1°1 1@ - [aw®lly

b + | [x°] l-“xo

I*1law®ll.  (5.14)

But, by the alignment property of optimal x° and optimal AW°

(Definition 5.1 and Corollary 5.2), it follows that
| °
x .

which implies, in view of (5.3) and (5.4), that ¢(x°,w°) = "’(wo,xo).

* Haw®ll = (xo,.l.l.'w()) = x0TAWC
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The fact that Proposition 5.2 holds is not, in itself, a sig-
nificant result. Actually, if it were not true that ¢(x°,wp) =
w(wp,xo) then one would have just cause for questioning the validity
of the dual program, Problem B. The interesting result is that the

Lagrangian multiplier utilized in the function V¥(w,x) takes the

form of norm |'xl . In mathematical programming, the dual variables
(Lagrangian multipliers) are often interpreted as "shadow costs"

(see [37,[41]). Further analysis of the miltiplier |[x|| in the
context of a shadow cost and interpretation of the physical signi-
ficance of this functional would indeed be an interesting area for
future investigation. Moreover, in the context of a generalized
goal programming problem (based on the lp metric), analysis of

the dual problem, Problem B, in view of expression (5.2) might
identify those aspects of duality, indifference, and sensitivity

analysis not covered in the duality results by Kormbluth [31],
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6. CONCLIUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

The contribution of this thesis may bé characterized as pro-
viding a computationally attractive approach to the linearly con-
strained minimam lp norm problem. Inasmich as the minimum norm
problem is fundamental to such problem areas as linear multiple ob-
jective programing and linear regression (with or without constraints),
it follows that the results of this study provide a merginal contri-
bution to these areas as well.

Although we have used the adjective "attractive" to describe
the procedure presented herein, a valid criticism can be made
regarding the size of the resulting dual problem--albeit a linear
model. In particular, we will now consider the dual problem and

suggest a procedure to expedite the solution.

6.1 Reduction of the Working Basis

With regard to the computational aspects of the problem, let
us revisit the dual problem, Problem @, in Chapter 4., Observe, in
particular, the (linear) congtraints on the model. It is clear that
the size of this linear program can become quite large as the number
of decision variables, constraints, and goal functions increase.
Although this approach affords the advantege of linear optimization,
it is evident that a multiple criterion program of moderate size re-
quires the solution of a dual problem (i.e., Problem Q) which is
bordering on a "large-scale programming" problem. Analysis of the

model suggests that we consider equivalent fornilations of this
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problem to expedite the solution procedure. In particular, the linear

system
7
(o
~ T 6 )
T T T n
cn,k “Ch.x An,m On,k on,k On,k X
- . s_ | [s
Ty T k,m Tk Ty O :
0
%k %x %m Tk e k
L -
N k
5., ¢ 0 L _

$ -
l, 2, sesy 5k+m

can be expressed equivalently as

2 O)
] 5
T T n
cn,k Am,m On,k on,k On,k 0
Ty Ok,m Iy Ty On,k y= Z) (6.1)
0
%k %m Tk e I x
L - p)
P
b po

where yEthm, ¥ unrestricted for i=l,...,k, and A i 0

for i=k+l,...,4k+m. Hence, an elimination of some of the column

vectors in the model is possible. However, the essence of the computa-
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tion lies in the mmber of constraints since this determines the
size of the bases which must be manipulated at each iteration of
the simplex algorithm. A reduction in the size of the working basis
is possible in this problem. To demonstrate this reduction, let us

express the last k 'constraints on the model as

P
[Ik I, ij y= | (6.2)
Plx
- 3Kk - >
YeER™ , ¥y = O. Note that the system may be expressed as
[Ik (6.3)

since the last k components of the vector ¥ are, effectively,
"slack" variables. Moreover, rearranging the order of the variables

in (6.3) suggests that we consider the equivalent system:

1A
.

)
o
g x
[ ]

Observe that this set of constraints is amenable to the methods of

Generalized Upper Bounding. In particular, this formulation permits
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the last k constraints in the linear system (6.1) to be removed
from the working basis when this upper bounding algorithm is
employed.

In summary, the constraint set for the dual problem, Problem Q,
contains 5k+m variables and 2k+n constraints with a working
basis of rank 2kin. The results of this analysis indicate that
this dual problem can be expressed equivalently as a linear system
involving Uk+m variables, k+n "natural" constraints, and a
system of k "generalized ujper bounding" constraints. Thus, the
effective working basis has rank k+n. This reduction could be very
significant in the solution of large scale problems--particularly
when there are many goal functions in the model. Clearly, further
study of this dual problem, Problem Q, might yield further reduc-

tions to expedite the solution of large models.

6.2 Concluding Remarks

Perhaps the most significant contribution of this research is
the potential epplication of these results to multiple criterion
optimization where the decision-maker is interested in studying
alternative measures of achievement based on the 2P metric.
Currently, such analysis requires the availability of nonlinear pro-
gramming software. Although these results demonstrate that linear
optimization techniques are sufficient, it is clear that the size
of the resulting linear model may bec_:ome a deterrent for large-scale
problems. In summary, it appears that more and larger problems were

uncovered than solved.
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9. APPENDIX A: GENERALIZED INVERSE OF A MATRIX
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Let C be any arbitrary metrix. Then the generalized inverse
*
* of C, denoted as C , may be defined as that unique matrix which

satisfies the following four equations:

1. ccc=C

2. c¥ec®=c*
3. cc = (ccy
b, CCc=(CC)

It cen be shown that for any matrix C (nonsingular, singular, square,
rectangular, zero or nonzero) there exists a unique matrix C* which
satisfies the above set of equations.

When a matrix C has an ordinary inverse ¢t (i.e., when
C is nonsingular), C* is equivalent to C'l since C":L satisfies
the first equation, and the uniqueness property of C* gusrantees

-1

* , *
that C = C ~. As shown in Ijiri [26], the generalized inverse C

of a matrix C has the following properties:

o
1. C=0 (mmn) implies that C = 0 (nxm).

¥
2. ¢ =2¢C.
* *
3. (') =(c)".
s * -1
4, If C is nonsingular, then C =C ~,

* *  *
5. (c¢)" =c (c)'.
6. If U and V are unitary, then (UCV)' =

*
v'c U'.

il
o
a
Q
a”
]
o

= 5 '
7. If C Ai where CiC;] 1 Cy

*
vhenever i # j, then C

]
™
Q
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* *
If C is normal, then C C=CC and
n,* *\n
(¢ = ().
*
c,C'C,C', and C C all have rank equal to
*
trace C C.
* * * *
Cg,CC, (IT-CC), and (I-CC) areall
hermitien and idempotent,

% * %
(aC) =ac where & is a complex nunber and

e means &~ if a#0 and O if a= O.

If C is hermitian snd idempotent, then C = C.
If C has full column ramk, then C = (c'C)™Yc.
If C has full row rank, then C = c'(cc')™t.
If B(mxr), C(rxr), and D(rxn) each has

rank r, where 1 S r S minimm (myn), ‘then

* * K *
(D) =DC B .
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10. APPENDIX B: DUALITY IN GEOMETRIC PROGRAMMING



In this appendix we will consider the fundamental properties
of primal and dual geometric programming problems. In particular,
the duality relationship itself will be explored as the dual
problem is constructed. Virtually all of the material presented
herein may be found in Duffin, Peterson, and Zener [167; nence, ex-
plicit references on the key theorems will be omitted.

The most general form of a primal geometric programming

problem is given as:

PROBLEM GP
minimize go(x)
subject to
<
gk(x) "1 k=l,2’.oo’P
xj>0 J=125000yn
Here
e n .
gk(x) = 2 cki i xa.tkla k = 0,1,:..,P (B.l)
i=1 Ty=1 9
where ¢

ki > 0 and akij denote arbitrary real numbers.

To obtain notational simplicity we will express (B.l) as

n 8&,.
gk(x)= I oe, mx 9

k- = O,l,lcl’P
11 fk) “y=1

where I [k] denotes the appropriate set of indices for the



function gk(x) such that I[0] = (1,2;...,m }, I[N = {m +1,
eeemtm ) ete.

The functions gk(x) are known as posynomials since each term‘
is guaranteed to be positive over its domain of definition. As a
consequence of these poéitive terms, geometric programming is a
branch of confex programming., However, the highly nonlinear na-
ture of this programming problem suggests that a sclution proce-
dure should be based on an equivalent problem which is more
computationally attractive. Such is the nature of the dual geo-
metric programming problem. Before presenting the dual problem,
we will introduce several key results which will be useful in
the analysis of the duality reletionship.

Duality in geometric programming is based on an applicstion
of the well-known arithmetic mean-geometric mean inequality. In its
full generality, this inequality may be stateq as follows: If
Wstyseesl 8T n nonnegative numbers and if 61,62,...6n have the .
prbperty that .

Ls 1

=1 %

and

§. >0 for i=1,...,50,

then



< 113

n n51

>
Idu, - mu , (B.2)
=121 gl -

In the special case where 6, = 1/n, the left-hend side of (B.2)
and the right-hand side of (B.2) are, by definition, the arithme-
tic mean and the geomefric mea.nA, respectively. Hence, in this case,

(B.2) may be expressed as

n n 1/n
T, 2 7wy,
i=1 * i=1*

sl

which is the familiar arithmetic mean--geometric mean inequality.
An extension of this classic inequality is now presented for.:t‘w-

ture reference in the following lemma.

LEMMA B.l Let u; > 0, §; 2 0 for i=l,...,n be arbitrary real

nmumbers, Then

where



I
T

and
6.
i
Yy
5| =1
i
if 'Si = 0. Moreover, the inequality becomes an inequality if, and
only if,
n n
§ . = N =1 sseglle
ji__flul uai_—I_:lGi, j 2 b

The role of this inequality is centrel to the- theory of duality
in that it provides & basis for the proof of the Main Lemma of
Geometrié Programing and, hence, the weak and strong duality
theorems.

In developing thé most general form of the dual geometric
program we first consider the construction of a dual objective
function tailored to the unconstrained minimization of a posy-
nomial

n

g(x) = .
g1t

An application of Lemma B.1 states that

8 s

1 m
ese Um (B'3)

8U. + vee +8U 20U
mm 1

i1l
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where Ul

are posgitive welghts w_hich satigfy the normality condition

see .,Um are arbitrary nonnegative numbers and 61,...6m

Letting Wy = <Sj_Ui implies that

m s m ui 61
i=1 * 1=1\%
. n &i.
Substituting the terms w = ¢, 7 X, J  into the right side of
J=1

(B.4) we have the pre-dual function

Tt a'i;] 1
m Ci =1 X
v(gx) = n N = S
i=1 _ di

m ) ci Si n S,
= g ? m XJJ
i=1 \°1 J=1

where S, denotes the linear combinations

J
n

sj = =El aij Gi for j=l,...,n.

Suppose now, that it is possible to select the weights, 61 s such

that S 3 = 0 for all Jj. Then the pre-dual function is independent
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of the primal variables xj. That is, we restrict the dual variables

to be contsined in e dual space QD which is the orthogonal comple-

ment of the primal space S?P The result, then, is the dual func-

tion

i=1

S,
m e, \'i
V(G) = T (-(S-.-) e
i
Note also, in view of (B.L4) that
> >
g(x) = M~ v(§)

for any x€ 2_, 6 ¢ Q

P D*

Incorporating a prototype posynomial constraint into the program
introduces a set of unnormalized weights. Let Al,..., 8, denote
these unnormelized weights and by A(A) the sum: |

n
Ay = A,
T
The relationship between the normalized weights & and the unnormsl-
ized weights 4 is then Ai = X A)Gi which implies that

A
s _ i C
i m fOI‘ 1 1,...,m (B.s)

t



u7

For unnormalized weights, we have as a consequence of Lemma B.1l that

A.
m > u, 1/)\;
I - rw

1 i) .

i=

|
L

m
T }‘(A).
i=1

In view of the above we can state a pi‘ototype constrained

geametric program as follows

A (8) . n o fus) B A (a)
MIN g0°- 2 (f) 2 (a ©
i=1 i
subject to
Muval
> M u\a A Q)
12 gx )2 4 L(IE) 1 ()
f=n+1| \ 4 |

Now, multiplying inequality (B.6) by (B.7) we have that

A .
M H Al '
M -EE)

it | |3

CA(BY , m | (w) d
g (x) ° : Ul (-EJ—' : .
© i=3 \i

A (8) Ao (8)

(8.7)

A(A)l(.A)

This inequality is valid for any selection of A. It is more mean-

ingful, however, to select the normalization )‘o (8) = 1.

Letting

§; denote the weights normalized ih this manner we have that

6; . .
m | fu,
g (x) 2 = (-i) A&)ME) < y(s,x)
o} -1 (Si
n | fe,) 81 n I; 81461
= 7 (3&) )\(6))‘(6) m xi=l
i=1] \% g=1 9



118

Likewise, this procedure can be extended to a program with N terms

and p prototype constraints. In this case,

S,
n § N{’e.\H p x»(8) n s
v(§) = x93 = 1 t-g-li T Ai(é) * r ox9 .
j=1 i=1] \°1] |x=1 j=1

Again, restricting 8 i to the dual space QD forces SJ. to vanish
for 211 j and gives the desired result. In the constrained cese,
as well as the unconstrained case, we also have that

g (x) = M2 v(s)

o
for any
D.

XEQP,GEQ

Thus, the dusl of Problem GP is given as

PROBLEM GD
8
' P e\l e 2, (8)
Maximize  v(8) = = ™ = 7 xk(s)
i=0 ieIlk| \°i) (k=1
subject to
(8= 3 8, =1 (normality)

ieIfo]



19

N
Z 8,.8, =0 J=lyessyn (orthogonality)
=1 11 .

. .
§, -0 "~ i=1,...,N (positivity).

Consider, now, the relationship between the primal progrem,
Problem GP, and the dual program, Problem GD. This duality rela-

tionship is characterized by the Main Lemma of Geometric Program-

ming which is given as

LEMMA B.2 If x satisfies the constraints of the primal problem

and 6 satisfies the constraints of the dual problem, then
>
g,(x) 2 v(0).

Moreover, under the same conditions,

g,(x) = v(e)
if, and only if,
( nooa.
c, m x. ieT 0]
=1 J
gonS ‘
ai - ﬁ
n 8 .
. Alg(é) C. m x,ij iEI [k]’ k:L’-Oc’P.
149
9
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With regard to the equivalence of the primal and dual problems,

necessity and sufficiency are provided by the first and second

duality theorems of geometric programming which are given as:

THEOREM B.3 Suppose Problem GP is superconsistent (i.e., satisfies

Slater's condition) and that the primal function go(x) attains

its minimum value at a point which satisfies thev primal congtraints,

Then

1.

3.

The corresponding dual program, Problem GD, is consistent
and the dual function v($) attains its constrained

meximm at a point which satisfies the dual constraints.

The constrained meximum velue of the dual function is

equal to the constrained minimum value of the primal

~ function.

*
If x 1is g minimizing point for Problem GP, then there

*
are nonnegative Lagrangian mmltiplious Vo k=1l,e003D)

such that the Lagrangian function

| D
L(x,y) = g, (x) + k=21 ¥ (g (x) - 1)

has the property

Lx5y) € g (X)) = Lx',y") 5 L(x,y)
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for arbitrary x 5 > 0 snd arbitrary Vi Zo. Moreover, there

: *
is a maximizing vector § such that

[e. n x 3 i€1 [0

*
‘Si = <
n a. . . k
ykc il X.la - iel [ ]’ kr_-l,oon’P
J=1 s
L &)

) * *
where x=x and y =y . Furthermore,
*

Y.
k : .
- -12 se e
)\k(ﬁ) mo x*) ‘ k=1,25.04,P

L, If § is a meximizing point for dual Problem GD, each
minimizing point x* for primal Problem GP satisfies the
system

*
gv(s )s il 0]
* * .
\ai/xk(s )s iel [k)

vhere k ranges over all positive integers for which

Lo*
r;(87) > o.

THEOREM B..4 If primal Problem GP is consistent and there is a

*
point § with positive components which satisfies the constraints
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of dual Problem GD, the primal function go(x) attains its con-
* .
strained minimum value at a point x which satisfies the con-

straints of primal Problem GP.
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11. APPENDIX C: THE RELATIONSHIP BETWEEN LINEAR AND
GEOMETRIC PROGRAMMING



124

On studying the properties of posynomial functions on geometric
programming, Alex Federowicz in [16] observed a peculiar relationship
betw;aen linear programming and geometric programming. Namely, by
a simple transformation of variables, the equivalence between linear
programming and geometric programming with single-term functions is

easily established. His analysis follows.
PROBLEM Ll

Minimize Go(z)=a 2. + 8.2, +F eoo + 8.2 +C

01°1 0272 . On"n 0

subject to

’ <
Gi(z) = 8;9%) * 8% te..ta oz +Co- 0,
i = l,.'.’m
where aij and Ci denote arbitrary constants. Using the following

one-to-one transformations:
= z = f, C = fo
G.(Z) n g., C. n «9 2, nx.,

where each cs and x(_j is positive, we can express Problem Ll as

~ an equivalent geometric program.
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PROBLEM ML
n a
o
Minimize go(x) = ¢, m Xy J
. 31
subject to
xj > O J. = l’ L N ) ’n
and
n a,.
gi(x) e, lea 1 i= 1lyessq.
J=1

Note that this program is a special type of geomeiric program for
which there is only one term in each posynomial; such & single-term
posynomial is called a monomial. Accordingly, the dual problem is

expressed as:

PROBLEM M2
mo J m Ai(s) ‘
Maximize v(8) =} = | i} - T %i(a). (c.1)
i=0 { §. i=1
i
subject to
> .
Si - 0 1=1,aaa,m’
§. =1.
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and

m

T a. . 6- =0 j=l,,'oo,n-
i=1 1J 1

Here a‘ij and c; ere the exponents and coefficients, respectively,
as given in Problem Ml. Federowicz also observed that this dual pro-
gram can be further simplified by exploiting the monomial form of

its primal. Restating the product function (C.1) we have that

m c.6' m A, (8)
v(®) = | (f-) ™ X, (6)

i=0 \"i} Ji=1

vhere the dual dependent variable )\i(é) is defined as

Xi(é) = I 6

iegpa) T

Note that, for a program with monomial constraints,

‘Thus,
6,

6) = 7 (Ci) LY
v = v — T
§ N i

i=o i



6o 6:I.
= |5 5, i
(o) i= i i=1
6 (]
- 6
mjfc,
- S 5 )1
=% . (6 . ) ( i)
i= i
m 6 -9, .
i i i
= m
co T le) T G T )
m 6:2
=c_ T (e.) ~ -
° 44 i
Now, using the one-to-one transformation
V() = in [v(8)
we can express Problem M2 equivalently as:
PROBLEM M3
n
Maximize V(6)=C_ + I ()5,
o . ii
i=1
where ¢, =,¢n(ci) for i=0,1,...,m,
subject to s, 20, 1= 0,1y.0.,m,

1
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and

5 =
a‘ol"‘a‘LLlsl"r""Fa'lnlm 0

§ =
82 * a'21.262 Foeee F %2 m 0

]
o

8 . )
8‘on+£‘:l_nl+" +&"mnm

Observe that the resulting linear progran is simply the duali of

Problenm Il which is as it should be.
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